Analysis of Finite Wordlength

Effects

 |deally, the system parameters along with
the signal variables have infinite precision
taking any value between —oo and o«

 |n practice, they can take only discrete
values within a specified range since the
registers of the digital machine where they
are stored are of finite length

e The discretization process resultsin
nonlinear difference equations
characterizing the discrete-time systems
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Analysis of Finite Wordlength
Effects

e These nonlinear equations, in principle, are
almost impossible to analyze and deal with
exactly

 However, if the quantization amounts are
small compared to the values of signal
variables and filter parameters, a smpler
approximate theory based on a statistical
model can be applied
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Analysis of Finite Wordlength
Effects

e Using the statistical modéd, it is possible to
derive the effects of discretization and
develop results that can be verified
experimentally

e Sources of errors -
(1) Filter coefficient quantization
(2) A/D conversion
(3) Quantization of arithmetic operations
(4) Limit cycles
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Analysis of Finite Wordlength
Effects

e Consider the first-order |IR digital filter
yin]=a y[n-1]+Xn]
where y[n] I1sthe output signal and x[n] Is
the Iinput signal
* \When implemented on adigital machine,
the filter coefficient oo can assume only

certain discrete values o approximating the
original design value a
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Analysis of Finite Wordlength
Effects

e Thedesired transfer function is

1 Z
H(2) gyl Z-a
e The actual transfer function implemented is
Nea_ 2
H(2)=,"%
which may be much different from the
desired transfer function H(2)
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Analysis of Finite Wordlength
Effects

e Thus, the actual freguency response may be
quite different from the desired frequency
response

 Coefficient quantization problem issimilar
to the sensitivity problem encountered in
analog filter implementation
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Analysis of Finite Wordlength

Effects

 A/D Conversion Error - generated by the
filter Input quantization process

o If the input sequence x[n] has been obtained
by sampling an analog signal X, (t), then the
actual input to the digital filter is

] =xn]+¢n]

where gn] isthe A/D conversion error
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Analysis of Finite Wordlength
Effects

o Arithmetic Quantization Error - For the
first-order digital filter, the desired output of
the multiplier is

vin] =ay[n-1]

e Dueto product quantization, the actual
output of the multiplier of the Implemented
filter Is

Vin]=ayln-1 +e,[n] =vn] +¢&,[n]
where €,[n] isthe product roundoff error
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Analysis of Finite Wordlength
Effects

e Limit Cycles- The nonlinearity of the
arithmetic quantization process may
manifest in the form of oscillations at the
filter output, usually in the absence of input
or, sometimes, in the presence of constant
Input signals or sinusoidal input signals
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Quantization Process and
Errors

Two basic types of binary representations of
data: (1) Fixed-point, and (2) Floating-point
formats

Various problems can arise in the digital

Implementation of the arithmetic operations
Involving the binary data

Caused by the finite wordlength limitations
of the registers storing the data and the
results of arithmetic operations
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Quantization Process and
Errors

e For example in fixed-point arithmetic,
oroduct of two b-bit numbersis 2b bits

ong, which has to be quantized to b bitsto
fit the prescribed wordlength of the registers

* Infixed-point arithmetic, addition operation
can result in a sum exeeding the register
wordlength, causing an overflow

 Infloating-point arithmetic, thereisno
overflow, but results of both addition and
multiplication may have to be quantized

11 Copyright © S. K. Mitra




12

Quantization Process and

Errors

* |n both fixed-point and floating-point
formats, a negative number can be
represented in one of three different forms

 Analysis of various quantization effects on

the performance of adigital filter depends on
(1) Data format (fixed-point or floating-point),

(2) Type of representation of negative numbers,

(3) Type of quantization, and

(4) Digital filter structure implementing the transfer
function
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Quantization Process and
Errors

» Since the number of all possible combinations
of the type of arithmetic, type of quantization
method, and digital filter structureisvery
large, quantization effects in some selected
practical cases are discussed

* Analysis presented can be extended easily to
other cases
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Quantization Process and

Errors
* In DSP applications, it isacommon practice

to represent the data elther as a fixed-point
fraction or as a floating-point binary number
with the mantissa as a binary fraction

o Assume the available wordlength is (b+1)
bits with the most significant bit (MSB)
representing the sign

* Consider the datato be a (b+1)-bit fixed-
point fraction
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Quantization Process and

Errors

* Representation of ageneral (b+1)-bit fixed-
point fraction is shown below

g1 o=2 2D

() !
S A4 a_- e o o d_p
A

o Smallest positive number that can be
represented in this format will have aleast
significant bit (LSB) of 1 with remaining
bitsbeing all 0's
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Quantization Process and

Errors
 Decimal equivalent of smallest positive

number is & =27°
* Numbers represented with (b+1) bits are

thus quantized in steps of 27" called
guantization step

e Anorigina datax represented as a (f+1)-bit
fraction Is converted into a (b+1)-bit
fraction 9(x) either by truncation or

rounding
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Quantization Process and

Errors

* The quantization process for truncation or
rounding can be modeled as shown below

X 2 QX

17
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Quantization Process and
Errors

e Since representation of a positive binary
fraction Is the same independent of format
being used to represent the negative binary
fraction, effect of quantization of a positive
fraction remains unchanged

» The effect of quantization on negative
fractionsis different for the three different
representations
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Quantization of Fixed-Point
Numbers

e Truncation of a(p+1)-bit fixed-point
number to (b+1) bitsis achieved by ssmply
discarding the least significant (£ —Db) bits
as shown below

27192 b P
VI
S|ajjay e e
A
To be discarded
Sj8jap e |ap
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Quantization of Fixed-Point
Numbers

» Range of truncation error g =9 (X) — X
(assuming 3 >> b):
* Positive number and two’s complement
negative number
-0<& <0
e Sign-magnitude negative number and ones -

complement negative number
0< 81: <0
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Quantization of Fixed-Point
Numbers

» Range of rounding error & =9 (X)—X
(assuming 3 >> b):
* For all positive and negative numbers

—é<8r Sé

2 2
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Quantization of Floating-Point
Numbers

 Infloating-point format a decimal number x
IS represented as X = 2E .M where Eisthe
exponent and M isthe mantissa

 MantissaM isabinary fraction restricted to
lie in the range

1
2SI\/I <1

* Exponent E Iseather apositive or anegative
binary number
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Quantization of Floating-Point

Numbers

e The quantization of a floating-point number
IS carried out only on the mantissa

 Rangeof relativeerror:

_9(0-x_Q(M)-M
X M

e Two's complement truncation

—-20<& <0, x>0
O0<¢g <20, x<O0

E
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Quantization of Floating-Point

Numbers

o Sign-magnitude and ones s complement
truncation

—20 < gt <0
e Rounding of all numbers

—0<&g <0
e Note: We consider 1n this course fixed-
point iImplementation case
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Analysis of Coefficient
Quantization Effects

e Thetransfer function H (2) of the digital
filter implemented with quantized
coefficients is different from the desired
transfer function H(z)

o Main effect of coefficient quantization isto
move the poles and zeros to different
locations from the original desired locations
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Analysis of Coefficient
Quantization Effects

e The actua frequency response H(e!?) is

thus different from the desired frequency
response H(e'?)

 |n some cases, the poles may move outside
the unit circle causing the implemented
digital filter to become unstable even

though the original transfer function H(z2) Is
stable
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Analysis of Coefficient
Quantization Effects

o Effect of coefficient quantization can be
easlly carried out ussng MATLAB

e Tothisend, the M-filesa2dT (for
truncation) and a2dR (for rounding) can be

used
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Coefficient Quantization Effects
On a Direct Form |IR Filter

o Gain responses of a 5-th order elliptic
lowpass filter with unquantized and
guantized coefficients

Fullband Gain Response Passband Detalls

original - solid line, quantized - dashed line original - solid line, quantized - dashed line

Gain, dB
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Coefficient Quantization Effects
On a Direct Form IIR Filter

 Pole and zero locations of the filter with
guantized coefficients (denoted by “x” and

“0”) and those of the filter with unquantized
coefficients (denoted by “+” and “*")

£ 05 o

g

g o ¢ ’

g-O.5 +
-1} e

-1 05 0 05 1
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Coefficient Quantization Effects

On a Cascade Form IIR Filter

o Galn responses of a 5-th order dliptic
lowpass filter implemented in a cascade
form with unquantized and quantized
coefficients

Fullband Gain Response Passband Details

original - solid line, quantized - dashed line . 5original - solid line, quantized - dashed line

Gain, dB

“0 01 02 03 04 05

olt .
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Coefficient Quantization Effects
On A Direct Form FIR Filter

o Gain responses of a 39-th order equiripple
lowpass FIR filter with unquantized and
guantized coefficients

Fullband Gain Response Passband details

original - solid line, quantized - dashed line origina - solid line, quantized - dashed line

0 H\
-20 .

Gain, dB

W

/1 oln
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Estimation of Pole-Zero

Displacements

e Consider an N-th degree polynomial B(z)
with ssimple roots:

N . N
B(2)= ¥h7 = [1(z- %)
i=0 k=1
W|th bN :1
* Roots z, of B(z) are given by
VAV rkej‘gk
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Estimation of Pole-Zero

Displacements

o Effect of coefficient quantization isto
change the polynomial coefficient b to

b +AB
e Thus, the polynomial B(z) after coefficient
guantization becomes

B(2)= > (b +Ab)Z
=0y N
_B(2)+ 3 (AR) 2 = [](2-2)
1=0 k=1
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Estimation of Pole-Zero
Displacements

e 2, denotes the roots of B(z) and are the
new locations to which roots z, of B(2)
have moved

e For small changes in the coefficient values,

2 will be close to z, and can be expressed

asS
2k =2 + AZk = (rk + Ark)ej(ek-l_Aek)
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Estimation of Pole-Zero

Displacements

* If A Isassumed to be very small, we can
express

2= (1 + Ark)ejekejwk = (e +An )@+ jA@k)ej@k
= el % + (A + jnag, el
neglecting higher order terms

e Then |
AZk = 2k — 4 = (Ark + jrkAé’k)eJQk
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Estimation of Pole-Zero
Displacements

 Now we can express 1/B(z) by partial-
fraction expansion as

1 N
- -y Pk
B(z) k-1z2—%
where ok iIstheresidue of 1/B(2) at the
pole z=2z,l1.e,

(z-z) _ -
Pk = 8 ., = R+ J X
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Estimation of Pole-Zero

Displacements
e If 2 Isvery closeto z, then we can write
1 px
B(2) 2 -z
or
Az = py - B(%)
* But

B(2,) = 0= B(2) + _Ng_:(m)(zk)‘
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Estimation of Pole-Zero
Displacements

AZ =~ Py

e Therefore

N-1 .
> (An)(2)

;= — Pk

-
> (Ah)(z)

A4

assuming that 2, isvery closeto 2
* Rewriting the above equation we get

(Af + jrAG )% = (R + Xy )5

38

‘Nt .
z (Ab ) (%)
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Estimation of Pole-Zero

Displacements

e Equating real and imaginary parts of the
above we arrive at
At = (-R¢P + X, Qi) - AB =Sk - AB

0
AOy = —%(xkpk + RQy)-AB =Sk . AB

where

P =[cosf, 1y rk2 Cosly --- rkN‘lcos(N—Z)é’k]

Qy =[-sn6, 0 r2sing, - nrNtsin(N-2)6,]
AB=[Aby Ab; Ab, -+ Aby_4]"
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Estimation of Pole-Zero
Displacements
» The sensitivity vectors S and Sgk depend
only on B(z) and are independent of AB

e Once these vectors have been calculated,

pole-zero displacements for any sets of AB
can be calculated using the eguations given

* Elements of AB are multiplier coefficient
changes only for the direct form realizations
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Estimation of Pole-Zero
Displacements

* Example - Consider the direct form ||
realization of

H(2) =

z° z°

22_Kz+L B(2
X[n] —® +— yIn]
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Estimation of Pole-Zero
Displacements

 Here B(z2) = 7ia -Kz+L=(z2-7)(z-2,)
where z=rel?, z,=re1?

e \We compute

-7 J

P1

e Therefore
AB =

Q1=
P]_:

42

~ B(2)

77, 2rsing

AL —AK]'
—singd Q]

cosé 1]
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Estimation of Pole-Zero
Displacements
o Substituting these values we get

AT = X1QiAB = - AL

AG =—T(X;PAB) = AL AR

or2tang 2rsing
e |t can be seen that the 2nd-order direct form

|IR structure is highly sensitive to
coefficient quantizations for transfer

functions with polescloseto® =0or =«
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Estimation of Pole-Zero
Displacements

e Consider an arbitrary digital filter structure
with R multipliers given by

Ay k=1,2,...,R

e The multiplier coefficients ¢ are
multilinear functions of the coefficientsh
of the polynomial B(z)
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Estimation of Pole-Zero

Displacements

e Thus, when ¢ changes into o, + Aoy due
to coefficient quantization, the change Ab
In the polynomial coefficient b can be
expressed as

Ah Z lqAOlk, i=1,2,...,N—1
k=1 Olk
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Estimation of Pole-Zero

Displacements
e |n matrix form we have AB =C-Aa
where

" ob, b ob, |
e ta T ta
oy db O
C =| 6, 8—052 oa,
ab:N_l ab:N_1 8b:N_1
| Oy Oa, o,

Ao =[Aaq Aar, Aag - AaR]T
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Estimation of Pole-Zero
Displacements
* Herethe root displacements are given by
Ar, =S{-C-Aa
A =S -C-Aa

where the sensitivity vectors S and S‘gk
are as given earlier

* Note: The matrix C depends on the
structure but has to be computed only once
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Estimation of Pole-Zero
Displacements

* Example - Consider the coupled-form
structure with a transfer function given by

H(2) = -
(2 22— (a+8)z+(ad — By)
x{n] HQ

DS @ e o
Y
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Estimation of Pole-Zero

Displacements

e If a=0=rcos@ and f=—y=r9ng,
then the transfer function becomes
2
Hz)= , 7°
2 —2rcosfz+r
e Comparing the denominator of the above
with that of the transfer function of the

direct form structure we get
K=a+0 =2«
L=a5—,6’7/=a2+,82

2
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Estimation of Pole-Zero

Displacements

o Taking the partials of both sides of the last
two eguations we get

AL | [ 2rcosf@ 2rsiné | Aa

AK | 2 0 Ap

e Finally, substituting the results of the
previous example we arrive at

1

Ar | | 2r 0 2rcosfd 2rsind | Aa

AG| 1 1 2 0 AL
 2r’tand 2rsing _

50
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Estimation of Pole-Zero

* Or,

Ar
AO

Displacements
- cosf  snéd
}: ~1sing lcosd [

vi

e Ascan be seen from the above, the coupled-
form structure is less sensitive to multiplier
coefficient quantization than the direct form

structure
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A/D Conversion Noise
Analysis

o A/D converters used for digital processing
of analog signals in general employ two’s-
complement fixed-point representation to
represent the digital equivalent of the input
analog signal

 For the processing of bipolar analog signals,

the A/D converter generates a bipolar
output represented as a fixed-point signed
binary fraction
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Quantization Noise Model

 Thedigital sample generated by the A/D
converter i1sthe binary representation of the
guantized version of that produced by an
Ideal sampler with infinite precision

* |f the output word is of length (b+1) bits
including the sign bit, the total number of
discrete levels avallable for the
representation of the digital equivalent is 2+t
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Quantization Noise Model

* The dynamic range of the output register
depends on the binary number
representation selected for the A/D
converter

 The model of apractical A/D conversion
system is as shown below

¢ R R
XaQ» s;?nealer :)irz]nT)’ Quantizer all » Coder éln]

=Q (X[n])
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Quantization Noise Model

* The quantization process employed by the
guantizer can be elther rounding or
truncation

e Assuming rounding Is used, the input-
output characteristic of a3-bit A/D

converter with the output intwo’s-
complement form iIs as shown next
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Quantization Noise Model
 |nput-output characteristic

n1=Qn))

15l 011

010

101

w—— Full-scale range (Rpg) —\

Amin Amax
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Quantization Noise Model

* Thebinary equivalent X.,[n] of the quantized
input analog sample X[ n] for atwo's-
complement binary representation, is abinary
fraction in the range

—1< R[Nl <1
e |tisrelated to the quantized sample X[ n]
through 2% N
Rl =

S
where Rgg denotes the full-scale range of the
A/D converter
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Quantization Noise Model

Assume the input signal has been scaled to
beintherangeof =1 by dividing its
amplitude by Reg/2, asisusually the case

The decimal equivalent of Xg,[n] isthen
equal to X[ n]

For a (b+1)-bit bipolar A/D converter, the
total number of quantization levelsis 20+

The full-scale rangeis R = 2015
where ¢ Is the quantization step size
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Quantization Noise Model

For the 3-bit bipolar A/ D converter, total
number of levelsis2® =8

The full-scale range IsRgg =86 with a
maximum value of Ay =70/2 and a
minimum value of A, =—96/2

If the Input analog sample X5 (NT) Iswithin
the full-scale range

—% < X(nT) <70
It IS quantized to one of the 8 discrete levels
shown earlier
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Quantization Noise Model

* |In general, for a(b+1)-bit bipolar A/D
converter employing two’ s-complement
representation, the full-scale range is given

by
— (2b+ +1)2 < X, (NT) < (20+1 —1)2

e Denote the difference between the
guantized value 9 (X n]) = Y n] and the input
sample X[ n] asthe quantization error:

en] = Q(Xn]) - xn] = X[n] - x{n]
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Quantization Noise Model

o |t follows from the input-output
characteristic of the 3-bit bipolar A/D
converter given earlier that e[n] isin the
range 5 5

—2<qmsz

assuming that a sample exactly halfway
between two levels is rounded up to the
nearest higher level and assuming that the
analog input is within the A/D converter
full-scale range
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Quantization Noise Model

 Inthiscase, the quantization error €[n],
called the granular noise, 1s bounded In
magnitude according to —g <gn]< g

o A plot of the g[n] of the 3-bit A/D converter
as a function of the input sample x[n] is
shown below

el#]

AN NN N NN
TN NEN NN
. Res - i
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Quantization Noise Model

* \When the input analog sample is outside the
full-scale range of the A/D converter, the
magnitude of error e[n] increases linearly
with an increase in the magnitude of the
INput

 Insuch asituation, the error €[n] iscalled
the satur ation noise or the overload noise
as the A/D converter output 1s“clipped” to
the maximum value1—2° if the anal 0g
INput Is positive or to the minimum value
—11f the analog input Is negative
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Quantization Noise Model

A clipping of the A/D converter output
causes signal distortion with highly
undesirable effects and must be avoided by
scaling down the input analog signal X5(NT)
to ensure that it remains within the A/D
converter full-scale range

* \We therefore assume that input analog
samples are within the A/D converter full-
scale range and thus, there is no saturation
error
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Quantization Noise Model

* Now, the input-output characteristic of an
A/D converter is nonlinear, and the analog

Input signal 1s not known a priori in most
cases

o |t Isthusreasonable to assume for analysis
purposes that the error €/n] isarandom
signal with a statistical model as shown

below i %c?% s

e[n]
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Quantization Noise Model

* For simplified analysis, the following
assumptions are made:
(1) The error sequence {€eln]} Isasample
seguence of awide-sense stationary (WSS)
white noise process, with each sample g n]
being uniformly distributed over the range
of the quantization error

(2) The error sequence Is uncorrelated with
Its corresponding input sequence { X[ n]}

(3) The input seguence Is a sample sequence
of a stationary random process
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Quantization Noise Model

* These assumptions hold in most practical
situations for input signals whose samples
are large and change in amplitude very
rapidly in timerelative to the quantization
step in a somewhat random fashion

* These assumptions have also been verified

experimentally and by computer
simulations
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Quantization Noise Model

o The statistical model makes the analysis of
A/D conversion noise more tractable and
results derived have been found to be useful
for most applications

 |If ones -complement or sign-magnitude
truncation is employed, the quantization
error Is correlated to the input signal asthe
sign of each error sample e[n] is exactly
opposite to the sign of the corresponding
Input sample x[n]
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Quantization Noise Model

 Asaresult, practical A/D converters use
either rounding or two’ s-complement
truncation

« Quantization error probability density
functions p(e) for rounding and two’s-
complement truncation are as shown below

p(e) p(e)
1/ s
e
~52 0 82 =5 0 €
Rounding Two’'s-complement truncation
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Quantization Noise Model

e Mean and variance of the error sample g[n]:
e Rounding -

m, = (5/2);(5/2) 0

2 _((6/2)~(-612))" _
s 12 12
e Two’'s-complement truncation -

_0-6__
e =", 2

2 _(0-06)* 2
%e T 1 T
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Signal-to-Quantization Noise
Ratio

* The effect of the additive quantization noise

e[n] on the input signal x[n] Is given by the
signal-to-quantization noiseratio given by

2
SNRA/ D= 1O|Og10(0)2(] dB

Oe

where 0)2( Isthe input signal variance

representing the signal power and aé IS
the noise variance representing the
guantization noise power
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Signal-to-Quantization Noise
Ratio

For rounding, €n] is uniformly distributed
Intherange (-6/2,6/2)

For two’ s-complement truncation, €[n] is
uniformly distributed in the range (—¢,0)

For abipolar (b+1)-bit A/D converter

Hence - 2—2b(RFS)2
O~ =
€ 48

Copyright © S. K. Mitra



Signal-to-Quantization Noise
Ratio

2
* Therefore SNRy, p =1OI0910(22;“(3;|X: )Zj
S

- 6.02b+16.81— 20| og(RFS) dB

Ox
e Thisexpression can be used to determine
the minimum wordlength of an A/D
converter needed to meet a specified SNRy, p

» Note: SNR,, p Increases by 6 dB for each
bit added to the wordlength
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Signal-to-Quantization Noise
Ratio

* For agiven wordlength, the actual SNR
depends on o, , the rms value of the input
signal amplitude and the full-scale range Rg¢
of the A/D converter

e Example - Determine the SNR In the digital
equivalent of an analog sample x[n] with a
zero-mean Gaussian distribution using a
(b+1)-bit A/D converter having Reg = Koy
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Signal-to-Quantization
Ratio

e Here
NR,y/p =6.02b+16.81- 20

=6.02b+16.81- 20

Noise

0910(?5)(8)
0010(K)

o Computed values of the SNR for various

values of K are as given below:
b=7 b=9 b=11 b=13

b=15

46.91 5895 7099 83.04
43.39 5543 6/7.47 7951
40.89 5293 6497 77.01

ANANA
11|l
@ e J{@pRNAN

75

95.08
91.56
89.05
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Signal-to-Quantization Noise
Ratio

e The probability of aparticular input analog
sample with a zero-mean Gaussian
distribution staying within the full-scale
range 2Kao, IS given by

20(k)-1= 2 Ee‘yzlzdy
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Signal-to-Quantization Noise

Ratio

hus, for K = 4, the probability of an analog
sample staying within the full-scale range 8c
15 0.9544

EEE) On average about 456 samples out
of 10,000 sampleswill fall outside the full-
scale range and be clipped
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Signal-to-Quantization Noise
Ratio

* For K =6, the probability of an analog
sampl e staying within the full-scale range
126, 1s0.9974

) On average about 26 samples out of
10,000 samples will fall outside the full-
scale range and be clipped

 In most applications, afull-scale range of
166, is more than adequate to ensure no
clipping in conversion
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Effect of Input Scaling on SNR

e Consider the scaled input Ax|n]
e Thevariance of the scaled input is Aza)%
 Then
INR,,p =6.02b+16.81- 2010g;5(K)
+20logyo(A)

e For agiven b, the SNR can be increased by
scaling up the input signal by making A> 1
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Effect of Input Scaling on SNR

* But increasing A also increases the
probability that some of the input analog
samples being outside the full-scale range
Rrc and asresult, the expression for SNRy,
no longer holds

 Moreover, the output is clipped, causing
severe distortion in the digital
representation of the input analog signal
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Effect of Input Scaling on SNR

A scaling down of the input analog signal
by choosing A < 1 decreases the SNR

o It istherefore necessary to ensure that the
Input analog sample range matches as close
as possible to the full-scale range of the
A/D converter to get the maximum possible
SNR without any signal distortion
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Propagation of Input Quantization
Noise to Digital Filter Output

e To determine the propagation of input
guantization noise to the digital filter
output, we assume that the digital filter is
Implemented using infinite precision

* In practice, the quantization of arithmetic
operations generates errors inside the digital
filter structure, which also propagate to the
output and appear as noise
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Propagation of Input Quantization
Noise to Digital Filter Output

e Theinternal noise sources are assumed to
be independent of the input quantization
noise and their effects can be analyzed
separately and added to that due to the input
noise

 Model for the analysis of input quantization
NOISE:

x[n]%C?ﬂ H(z) | 9]
= y{n] +V{n]

en]
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Propagation of Input Quantization
Noise to Digital Filter Output

* Because of the linearity property of the
digital filter and the assumption that x| n]
and €] n] are uncorrelated, the output §[ n] of
the LTI system can thus expressed as

yl
wherey[n] ist

n]=y[n]+v[n]

ne output generated by the

unguantized input x[n] and v[n] isthe output
generated by the error sequence €[n]
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Propagation of Input Quantization

Noise to Digital Filter Output
e Therefore

vin] = hinl o n] = iqm]h[n—m]

e The mean m, of the out_put noisevin| is

lven b -
R CTC
and Its variance a\? IS given by

2 T .2
2 O )
avzzjez_jﬂH(eJ ) “dew
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Propagation of Input Quantization
Noise to Digital Filter Output

e The output noise power spectrum Is given
by

Pul@) =02 H(e?)

e The normalized output noise variance Is
given by

2 T .2
2 o 1
020="=1 ] H(Ee) do
—7T

Oe
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Propagation of Input Quantization
Noise to Digital Filter Output

o Alternately,

oon = ” i H(2)H (z 1)z dz

where C Is a counterclockwise contour In
the ROC of H(2)H (z )

* An eguivalent expression for the normalized
output noise vari ance is
Gv n= Z‘h[ n]‘

N=—0o0
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Algebraic Computation of

Output Noise Variance

e |In general, H(z) Isacausal stablerea
rational function with all polesinside the
unit circle in the z-plane

e |t can be expressed in a partial-fraction
expansion form

H(@) = 2H (2

where H; (z) Isalow-order causal stable
real rational transfer function

Copyright © S. K. Mitra



Algebraic Computation of

Output Noise Variance

o Substituting the partial-fraction expansion
of H(2) in

oon = 2] L [H(2H(zhHzdz

we arrive at

R R
oun=,y; X X [Hk(@H, (217 dz
k 1/=1C
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Algebraic Computation of
Output Noise Variance

e Since Hi(2) and H,(2) are stabletransfer
functions, it can be shown that

jH(2) HE(Z_l) 7z = fH,(2)H k(Z_l) 7 'z
C

e Thus, we can write

Cln= S (H(DH (2 Dz Tdz
] 7Z'J C
Rl R
> Y [H@H(zHz ldz

90 ZTEJ k=1/= k-l—lC
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Algebraic Computation of
Output Noise Variance
e |n most practical cases, H(z) has only
simple poleswith H, (z) being either a 1st-
order or a 2nd-order transfer function

o Typical termsin the partial-fraction
expansion of H(z) are:
A Bk CkZ + Dk
& % ipz+d,
o Letatypical contour integral be denoted as

] —ZﬂjﬁH (DH,(z7)Z dz
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Table of Typical Contour

Integrals
H,(z™")
B C,z'+D

H(2) A z‘lja z‘zib z‘1+€d

4 {4 /
A L 0 0
B 1
e |0 )
C.z+D, 0 | |
7’ +b z+d, ) °
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Table of Typical Contour

Integrals

e where
|, = A

_ BB,
1-aa,

(Cka T Dk Df)(l_ dkdé) - (Cf Dk o chkdk)bf
|3 _ — (Ck De - chzdz)bk

(1-d,d,)* +d. b7 +d b~ (1+d.d,)bb,

| — B,(C+D,&)

* 1+ba, +da’
. _B(C,+Da)
* 1+ba +d,a’

P
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Algebraic Computation of

Output Noise Variance

 Example - Consider afirst-order digital
filter with atransfer function

1 Z
H(z) = ==
1_g7l Z—«

o A partial-fraction expansion of H(2) is

. 94
H(Z)—1+m

* Thetwo termsin the above expansion are

Hi(2)=1 Hy(9)=,%_
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Algebraic Computation of
Output Noise Variance

* Therefore, the normalized output noise
variance is given by
2 o’ 1

Tun =1 1-a° 1-a?
o If the poleiscloseto the unit circle, we can
write o =1—¢ wheree =0
e Inwhich case
2 1 1

1-(1- 5)2 T 2
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Algebraic Computation of
Output Noise Variance

e Thus, asthe pole gets closer to the unit
circle, the output noise increases rapidly to
very high values approaching infinity

* For high-Q realizations, the wordlengths of
the registers storing the signal variables

should be of longer length to keep the
round-off noise below a prescribed level
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Computation of Output Noise
Variance Using MATLAB

* Inthe MATLAB implementation of the
algebraic method outlined earlier, the
partial-fraction expansion can be carried out
using the M-filer esi due

e Thisresultsin terms of the form A and
B, /(z—ax) where the residues B, and the
poles a are elther real or complex numbers

 For variance calculation, only the termsli,
and |, are then employed
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Computation of Output Noise
Variance Using MATLAB

o Anaternative fairly smple method of
computation Is based on the output noise
variance formula

Uvn Z‘h[n]‘

N=—0o0

* For acausal stable digital filter, the impulse
response decays rapidly to zero values

e Hencewe can write

Uv n=o = Z‘h[n]‘
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Computation of Output Noise
Variance Using MATLAB

 To determine an approximate value of a&n
thesum §; IscomputedforL =1, 2, ..,
and the computation is stopped when

SL _SL—1< K

where k 1s a specified small number, which
IS typically chosen as107°
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