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Discrete-Time Signals:
Time-Domain Representation

o Signhals represented as sequences of
numbers, called samples

o Sample value of atypical signal or sequence
denoted as x[n] with n being an integer in
therange —oo<n<ow

e X[n] defined only for integer values of n and
undefined for noninteger values of n

e Discrete-time signal represented by { x[n]}
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Discrete-Time Signals:
Time-Domain Representation

e Discrete-time signal may also be written as
a sequence of numbers inside braces:

(x{n]} ={...,— 0.2, 2.T2,1.Lo.2,—3.7,2.9,...}

 |ntheabove, (-1 =-0.2, 0] =2.2, 1] =1.1,
elc.

e Thearrow is placed under the sample at
timeindexn=0
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Discrete-Time Signals:
Time-Domain Representation

o Graphical representation of a discrete-time
signal with real-valued samples is as shown

below:
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Discrete-Time Signals:

Time-Domain Representation

 In some applications, a discrete-time
seguence { X[n]} may be generated by
periodically sampling a continuous-time
signal X5 (t)at uniform intervals of time

Xﬂf—j T \
fxar t)
ar "
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Discrete-Time Signals:

Time-Domain Representation
 Here, n-th sample s given by
XN] =Xy (t),_ v =Xa(NT), N=...,—2,-101...

 The spacing T between two consecutive
samplesis called the sampling interval or
sampling period

* Reciprocal of sampling interval T, denoted
as Fr, Iscaled the sampling frequency:
1
7T
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Discrete-Time Signals:

Time-Domain Representation
o Unit of sampling frequency Is cycles per
second, or hertz (Hz), if T isin seconds
* \Whether or not the sequence {x[n]} has
been obtained by sampling, the quantity
X|n] Is called the n-th sample of the
seguence

o {X[n]} Isareal sequence, If the n-th sample
X[n] isreal for all values of n

o Otherwise, {X[n]} I1sacomplex sequence
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Discrete-Time Signals:
Time-Domain Representation

o A complex sequence {X[n]} can be written
as {X{n]} ={Xre[N]} + J{ XimlN]} where
X[ N] and X[ N] are the real and imaginary
parts of x[n]

e The complex conjugate sequence of {X[n]}
isgiven by {x*[n]} ={Xe[n]} — J{Xm[n]}

o Often the braces are ignored to denote a
seguence If there is no ambiguity

Copyright © 2001, S. K. Mitra



Discrete-Time Signals:
Time-Domain Representation

o Example-{x/n]} ={cos0.25n} isareal
seguence
e {y[n]} ={e!%3M isacomplex sequence
e \We can write
{y[n]} ={c0s0.3n+ jsin0.3n}
={c0s0.3n} + j{sin0.3n}
where {Y,e[N]} ={cos0.3n}

{Yimln]} ={sn0.3n}
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Discrete-Time Signals:
Time-Domain Representation
e Example -

fwWn]} ={cos0.3n — j{sin0.3n} ={e 1%3M
IS the complex conjugate sequence of {y[n]}
e Thatis,

winl} ={y*[nl}
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Discrete-Time Signals:

Time-Domain Representation
WO types of discrete-time signals:

- Sampled-data signals in which samples
are continuous-valued

- Digital signalsinwhich samples are
discrete-valued

Signalsin a practical digital signal
processing system are digital signals
obtained by quantizing the sample values
either by rounding or truncation
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Discrete-Time Signals:
Time-Domain Representation

o Example -

Amplitude

Boxedcar signal Digital signal
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Discrete-Time Signals:
Time-Domain Representation

e A discrete-time signal may be afinite-
length or an infinite-length sequence

* Finite-length (also called finite-duration or
finite-extent) sequence is defined only for a
finitetimeinterval: N;<n<N,
where — o < Nl and N2 < oo WIth N]_S N2

e Length or duration of the above finite-
length sequenceis N =N, —N;+1
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Discrete-Time Signals:
Time-Domain Representation

 Example - x[n]:nz,—3£ n<4 isafinite-
length sequence of length 4—(-3)+1=8

y|n] = cos0.4n is an infinite-length sequence
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Discrete-Time Signals:
Time-Domain Representation

* A length-N sequence is often referred to as
an N-point sequence

* Thelength of afinite-length sequence can
be increased by zer o-padding, I.e., by
appending it with zeros
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Discrete-Time Signals:
Time-Domain Representation
 Example -

—-3<n<4
n
%elnl = { 0, 5<n<8

Is afinite-length sequence of length 12
obtained by zero-padding x[n] = n?, -3<n<4
with 4 zero-valued samples
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Discrete-Time Signals:
Time-Domain Representation

* A right-sided sequence X|n] has zero-
valued samplesfor n< Ny

it . 1]
L

A right-sided sequence

* |f Ny >0,aright-sided sequenceiscalled a
causal sequence
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Discrete-Time Signals:
Time-Domain Representation

e A left-sided sequence X[ n] has zero-valued
samplesfor n> N

A

A left-sided sequence

» |f Ny, <0,aleft-ssded sequenceiscalled a
anti-causal sequence
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Operations on Sequences

e A single-input, single-output discrete-time
system operates on a seguence, called the
Input sequence, according some prescribed
rules and devel ops another sequence, called

the output sequence, with more desirable
properties

Discrete-time
system
| nput sequence Output sequence

X[n] — — yIn]

Copyright © 2001, S. K. Mitra



19

Operations on Sequences

For example, the input may be asignal
corrupted with additive noise

Discrete-time system is designed to
generate an output by removing the noise
component from the input

In most cases, the operation defining a
particular discrete-time system is composed
of some basic operations
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Basic Operations

e Product (modulation) operation:

x[n] »C? > y[n]
— Modulator y[n] = x[n]- W[N]

w(n]

 An application isinforming afinite-length

seguence from an infinite-length sequence
by multiplying the latter with afinite-length
seguence called an window sequence

* Process called windowing

20
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Basic Operations

o Addition operation:

x[n > y[n]
— Adder " @ ' y[n] = X[n] +w{n]

win]

e Multiplication operation

A
—Multiplier Xl —{ >l y[n] = A-x[n]
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Basic Operations

e Time-shifting operation:

where N is an integer

yln]=xn—N]

 If N> 0, it isdelaying operation

— Unit delay 1

xn] — 21— yvin]  Y[n]=Xn-1]

e If N<O, Iitisan advance operation

X[n] —>| Z

— yinl y[n]=Xx[n+]]

— Unit advance

22
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Basic Operations

 Time-reversal (folding) operation:
yln] =x-n]

e Branching operation: Used to provide
multiple copies of a sequence

x[n] — l > X[n]

X(nj
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Basic Operations

» Example - Consider the two following
sequences of length 5 defined for 0< n< 4.
{an]}={3 4 6 -9 O
{b[n]}={2 -1 45 -3
* New seguences generated from the above

two sequences by applying the basic
operations are as follows:
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apn

eln

Basic Operations
}={aln]-b[n]} ={6 -4 24 —-45 (}
}={aln]+b[n]}={5 3 10 -4 -3
}=~;’{a[n]}={4.5 6 9 —-135 O}

* Aspointed out by the above example,
operations on two or more seguences can be
carried out If all sequences involved are of
same length and defined for the same range
of thetime index n

25
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Basic Operations

 However if the sequences are not of same
ength, in some situations, this problem can
0e circumvented by appending zero-valued
samples to the sequence(s) of smaller

lengths to make all sequences have the same
range of the time index

e Example- Consider the sequence of length
3defined for 0<n<2: {f[n]}={-21 -3
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Basic Operations

e \We cannot add the length-3 sequence{ f[n]}

to the length-5 sequence {a[n]} defined
earlier

o Wetherefore first append { f[n]} with 2
zero-valued samples resulting in alength-5
sequence{ fo[n]} ={-2 1 -3 0 G

 Then

1glnl} =tan]} +11e[n)f=1 5 3 -9 G

27
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Combinations of Basic
Operations

 Example -

yIn] = ay{ N] +a2X[n;1] +ozXN—-2]+a,Xn-3]
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Sampling Rate Alteration

 Employed to generate a new sequence y[n
with a sampling rate Fr higher or lower
than that of the sasmpling rate F+ of agiven
sequence X[ n]

o Samplingrate alteration ratio Is R:i

e If R>1, the process called interpolation
e If R< 1, the process called decimation
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Sampling Rate Alteration

* Inup-sampling by an integer factor L > 1,

30

L —1 equidistant zero-valued samples are
Inserted by the up-sampler between each
two consecutive samples of the input
sequence X[ nJ:

‘x[n/L], n=0,£L,+2L,---

n| =
%ln| 0, otherwise

\

X[N] —{t L — Xy[N]
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Sampling Rate Alteration

* An example of the up-sampling operation

31

Input Sequence

0.5 T
O]
©
=2
= 0
e
<

|

i
§

|

Output sequence up-sampled by 3

1
f Oﬂ
o)
S
2
= O
S
<

Timeindex n

O
10
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Sampling Rate Alteration

* In down-sampling by an integer factor

32

M > 1, every M-th samples of the input
seguence are kept and M —1 in-between
samples are removed:

yln] =X nM]

X[n] —{} mj— yIn|
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Sampling Rate Alteration

* An example of the down-sampling
operation

Tﬂ ﬁi Tﬂ TT? ] T T ﬁ | J J
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Classification of Sequences
Based on Symmetry

e Conjugate-symmetric sequence:

] = x*[-n]

If X[n] iIsreal, then it is an even sequence

- L1 L m 1l | -
T T I

An even sequence
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Classification of Sequences

Based on Symmetry
o Conjugate-antisymmetric sequence:

X n]=—x*[-n]

If X[n] iIsreal, then it isan odd sequence

An odd sequence
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Classification of Sequences
Based on Symmetry

* |t followsfrom the definition that for a
conjugate-symmetric sequence {X[n]}, X[ O]
must be areal number

o Likewise, it follows from the definition that

for a conjugate anti-symmetric sequence
{y[n]}, y[O] must be an imaginary number

e From the above, It also follows that for an
odd sequence {w[n]}, w[0] =0
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Classification of Sequences
Based on Symmetry

* Any complex sequence can be expressed as
a sum of Its conjugate-symmetric part and
ItS conjugate-antisymmetric part:

X[ N] = Xeg[ N] + Xcal N]
where

Xes[N] = 5 (4 n] + x* [-n])
XealN] = 5({n] = x*[-n])

37
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Classification of Sequences

Based on Symmetry

 Example- Consider the length-7 sequence
defined for —3<n<3:

{g[n]} ={0, 1+)4, -2+3, 4$j2, -5-16, -2, 3

* |ts conjugate seguence isthen given by

{g*[n]} ={0, 1-j4, —2— 3, 44T—j2, -5+16, ]2, 3}
e Thetime-reversed version of the aboveis

{g*[-n]} ={3, ]2, -5+)6, 4+]2, —2—]3, 1-)4, O}
T
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Classification of Sequences
Based on Symmetry

» Therefore {ges[n]} = 2{gln]+g* [-n]}

~{15, 05+j3, -35+j45, 4, -35-j4.5 05-j3, 1.5
?

» Likewise {gea[n} = >{g[n]-g*[-n]}

={-1.5, 05+j, 1.5-j15 -j2, -1.5-j15 -0.5-j, 1.5
T
|t can beeaslly verlfled that g.¢[N] = gcs[ 1]
and gca[n]__gca[ n]
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Classification of Sequences

Based on Symmetry

* Any real seguence can be expressed as a
sum of its even part and its odd part:

XN = X[ N] + Xog [N

where

Xev[N] = S({N] + X{—n])
Xod[N] = 5 (X[n] = {-n])
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Classification of Sequences

Based on Symmetry
* A length-N sequence x[n], 0<n< N -1,

can be expressed as X[ n] = Xpes[N] + Xpeal N]
where

XoeslNl = 3(4n] +x* [(-n)y 1), 0<n<N-1
IS the periodic conjugate-symmetric part
and

cha[n] = %(X[n] - X* [<_n>N])1 O<n<N-1
IS the periodic conjugate-antisymmetric

o Part
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Classification of Sequences
Based on Symmetry

* For areal sequence, the periodic conjugate-
symmetric part, isareal sequence and IS
called the periodic even part Xpe[ N]

* For areal seguence, the periodic conjugate-
antisymmetric part, iIsareal sequence and is
called the periodic odd part Xpo[N]
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Classification of Sequences
Based on Symmetry

* A length-N sequence x|[n] iscalled a
periodic conjugate-symmetric sequence if
X[n] = x*[(-M)y]=X*[N —n]
and Is called a periodic conjugate-
antisymmetric sequence if

X[n] = —X* [(-M)y] = =x*[N -1
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Classification of Sequences
Based on Symmetry

* A finite-length real periodic conjugate-
symmetric sequence is called asymmetric
sequence

* A finite-length real periodic conjugate-
antisymmetric sequenceiscalled a
antisymmetric sequence
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Classification of Sequences
Based on Symmetry

 Example - Consider the length-4 sequence
defined for 0<n<3:
{uln]} ={1+ )4, -2+ 3, 4-]2, -5- |6

* |ts conjugate sequence is given by
{u*[n]}={1- 14, —2—-1]3, 4+ ]2, -5+ |6}

e To determine the modulo-4 time-reversed
version{u* [(—n),]} observe the following:
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Classification of Sequences

Based on Symmetry
u*[(-0)4]=u*[0]=1- )4
U*[(=D4]=u*[3]=-5+ )6
U*[(=2)4]=u*[2] =4+ )2
U*[(-3)4]=u*[l] =—2— 3

N W O

e Hence
{U*[<_n>4]} :{1_ 141 —5+ 161 4+ J2! —2- 13}
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Classification of Sequences
Based on Symmetry

heref

ore

{UpeslN} = ;{u[n] +U*[(—n),]}

—{1, —-35+j45, 4, —35-j4.5

e Likewise

{upca[n]} = %{u[n] —u*[{(—n),]}

47

={j4, 1.5-jl5 -2, —1.5-j1.5
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Classification of Sequences
Based on Periodicity

» A sequence X[n] satisfying X[n]= X[n+ kN]
Is called aperiodic sequence with aperiod N
where N isapositive integer and k is any
Integer

o Smallest value of N satisfying X[n] = X[n+ kN]
Is called the fundamental period
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Classification of Sequences

Based on Periodicity
 Example -

o Q2 o o

e “TH_,: “TH_,: TTTQ_H__--;

6 -5 4 -3-2-1 01 2 3 4 56 7 8 9 10 1112 13 14 15

* A seguence not satisfying the periodicity
condition is called an aperiodic sequence
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Classification of Sequences:
Energy and Power Sighals

o Total energy of aseguence x[n] is defined by
Ex = Z‘X[n]‘z
N=—00

 Aninfinite length sequence with finite sample
values may or may not have finite energy

A finite length sequence with finite sample
values has finite energy
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Classification of Sequences:

Energy and Power Sighals

 The average power of an aperiodic
seguence is defined by

P = lim_1 YIXn]?
x = 1 MHELX[ n]

* Definethe energy of aseqguence x[n] over a
finiteinterval —K <n<K as

K 2
gx,K — n:Z_:J(X[ n:”
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Classification of Sequences:

Energy and Power Sighals
e Then im £
= 11m

K—o0 2K +1
e The average power of aperiodic sequence
X[n] with aperiod N is given by

N-1
P = . Z ‘)?[n]‘z
N n=0

* The average power of an infinite-length
seguence may be finite or infinite
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Classification of Sequences:
Energy and Power Sighals

 Example - Consider the causal sequence
defined by

- 0o

e Note: X[n] has infinite energy

 |tsaverage power isgiven by

P = lim " (921)4 _45
KooK +1\ 2o/ Koo 2K+1

53 Copyright © 2001, S. K. Mitra

(K +1)




Classification of Sequences:

Energy and Power Sighals
 Aninfinite energy signal with finite average
power Is called apower signal

Example - A periodic sequence which has a
finite average power but infinite energy

* A finite energy signal with zero average
power Is called an energy signal

Example - A finite-length sequence which
has finite energy but zero average power
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Other Types of Classifications

* A seguence X[n] issaid to be bounded if
Xn] <B, <

 Example - The sequence X n] =co0s0.3rnisa
bounded seguence as

Xn] =|cos0.3nn <1
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Other Types of Classifications

* A seguence x|[n] issaid to be absolutely
summableif

Z‘X[n]koo

N=—00

 Example - The sequence

_J0.3", n>0
y[”]‘{ 0, n<O

IS an absolutely summable sequence as
> 03" = L 140857<w
0 1-0.3
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Other Types of Classifications

* A seguence x[n] issaid to be squar e-
summable if

f\x[n]\z < 00

N=—00

 Example - The sequence
sin0.4n
hin]=""7x
IS square-summabl e but not absolutely
summable
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Basic Sequences

1 n=0

e Unit sample seqguence- olNn| =+
ple seq [n] 0, =0

pln] =+

-

3 4 5 6
58 Copyright © 2001, S. K. Mitra




Basic Sequences
* Real sinusoidal sequence -

X[ n] = Acos(w N+ ¢)
where A i1sthe amplitude, ®q IS the angular
frequency, and ¢ is the phase of X[n]

Example -

o =01
0

Zﬁf W il W fﬂ@

Amplitude

59
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Basic Sequences
* Exponential sequence -

X[n] = Aa", —co<n<w
where A and « arereal or complex numbers
. If wewrite o =e®ti®) A= Ael?,
then we can express

X[n] = A el —x [n]+ j [N,

where

Xrel

60

XmlN!

n] =| A" cos(wyn+ ),

] = Ae®" sin(wyn + ¢)
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Amplitude

Basic Sequences

e X.[Nn] and x.[n] of acomplex exponential
sequence are real sinusoidal sequences with
constant (c,= 0), growing (o, > 0), and
decaying (o, < 0)amplitudesfor n>0

Copyright © 2001, S. K. Mitra
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Amplitude

where A and o, are real numbers

Basic Sequences
* Real exponential seqguence -

nl=Aa", —o<n<wo

a=12

N W
(@) o

[
o
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Timeindex n
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0
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Timeindex n
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Basic Sequences

Sinusoidal sequence Acos(w,n+ ¢) and
complex exponential sequence Bexp( jmyn)

are periodic sequences of period N if ogN = 2nr
where N and r are positive integers
Smallest value of N satisfying o N = 2xr
Is the fundamental period of the sequence
To verify the above fact, consider
X[ n] = cos(mon+¢)
Xo[ N] = cos(q (N+ N) + ¢)
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Basic Sequences

 Now Xo[n]=cos(wy(n+ N)+¢)
= COS(w N+ ¢) cosw,N —sIin(o,N+ ¢)SInw,N
which will be equal to cos(m N+ ¢) = X[ N]
only if
sinow,N =0 and cosw,N =1
e Thesetwo conditions are met if and only if

woN=2rr1 or (%“:I?
0]
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Basic Sequences

e If 2n/w, ISanoninteger rational number, then
the period will be amultiple of 2n/w,

» Otherwise, the sequenceisaperiodic

» Example- x{n]=sin(~/3n+¢) isan aperiodic
seguence
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Basic Sequences

2
157
3
2
s 1
e
<
0.5
0
0 10 20 30 40
Timeindex n
e Here o, =0

. 2Tr
 Hence period N :Tzlfor r=0
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Basic Sequences

WTT W _TTWTT W _Tﬂ)
5 ﬁmw | %@& |

e Here o, =0.1n

o HenceNzﬁzzo forr=1

0.1z

6/



Basic Sequences

* Property 1 - Consider X[ n] =exp( jon) and
y[n] = exp(jwon) with 0<w; <7 and
21K < 0, < 2n(k +1) where k is any positive
Integer

o If w,=0wm7+ 21k, thenx[n] =y[n]

e Thus, X|n] and y[n] are indistinguishable
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Basic Sequences

e Property 2 - The frequency of oscillation of

Acos(mw,N) increases as ®, increases from O
to «, and then decreases as o, Increases from
T t02rx

* Thus, freguencies in the neighborhood of

» =0 arecalled low frequencies, whereas,
frequencies in the neighborhood of ®=m are
called high freguencies
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Basic Sequences

e Because of Property 1, afrequency @, In

70

the neighborhood of ® =2n k Is
indistinguishable from a frequency o, — 21tk
In the neighborhood of ® =0

and a frequency o, in the neighborhood of
o =n(2k+1) Isindistinguishable from a
frequency o, —n(2k+1) inthe
neighborhood of ® ==
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Basic Sequences

Frequencies in the neighborhood of ® = 2x k
are usually called low freguencies

Frequencies in the neighborhood of

® =1 (2k+1) are usually called high
frequencies

vq[n] = cos(0.1xn) = cos(1.9ntn) is alow-
frequency signal

V5[N] = c0s(0.8nn) = cos(1.2xn) is a high-
frequency signal
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Basic Sequences

* An arbitrary sequence can be represented in

12

the time-domain as a weighted sum of some
basic sequence and its delayed (advanced)
Versions

515
I
[ T
4 -3 2 1D11H34?
1

x[n] =0.56[n+2]+1.56[n—-1] — o[n—2]
+0o[n—4]+0.756[n— 6]

Copyright © 2001, S. K. Mitra
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The Sampling Process

o Often, adiscrete-time sequence x[n] is
developed by uniformly sampling a
continuous-time signal x,(t) asindicated
below

mm Al

ST 3T -T 0T

rBT,J

* Therelation between the two signalsis
XNl =x,(t),_ - =%(T),n=...,-2,-10,1,2,...
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The Sampling Process

 Timevariablet of X, (t)isrelated to the time

74

variable n of x[n] only at discrete-time
Instants t, given by

_~T_ N _ 271N
t,=nl = = — O
with k. =1/T denoting the sampling
frequency and
Q-+ = 2nF; denoting the sampling angular
frequency
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The Sampling Process

e Consider the continuous-time signal
X(t) = Acos(2rft + ¢) = Acos(Q.t + ¢)

e The corresponding discrete-time signal Is

X n] = Acos(Q NT + ¢) = A(:os(zgQO N+ ¢)

T

= Acos(w N+ ¢)

where o, =2nQ,/ Q7 = QT

IS the normalized digital angular frequency
of x[n]
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The Sampling Process

e |If the unit of sampling period T IsIn
seconds

* The unit of normalized digital angular
frequency o, Isradians/sample

e The unit of normalized analog angular
frequency Q, Isradians/second

» The unit of analog frequency f, ishertz
(H2)
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The Sampling Process
* The three continuous-time signals

0;(t) = cos(6rt)
g-(t) = cos(14nt)
gs(t) = cos(26mnt)

of frequencies3 Hz, 7 Hz, and 13 Hz, are
sampled at a sampling rate of 10 Hz, i.e.
with T = 0.1 sec. generating the three
seguences
oy[N] = cos(0.6nn)  9p[N] = cos(1.4rn)
gs[n] = cos(2.6mtn)
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The Sampling Process

* Plots of these sequences (shown with circles)

and their parent time functions are shown
below:

Amplitude

* Note that each sequence has exactly the same
_s Sample value for any given n
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The Sampling Process

o Thisfact can also be verified by observing that
d,[Nn] = cos(1.4nn) = cos((2n — 0.6r)n) = cos(0.67 N)
gs[N] = cos(2.6mn) = cos((2r + 0.67)n) = cos(0.67 n)

e Asaresult, all three sequences are identical
and It is difficult to associate a unique

continuous-time function with each of these
Sequences
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The Sampling Process

he above phenomenon of a continuous-
time signal of higher frequency acquiring
the identity of a sinusoidal sequence of

lower frequency after sampling is called
aliasing
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The Sampling Process

e Sincethere are an infinite number of

81

continuous-time signals that can lead to the
same sequence when sampled periodically,
additional conditions need to imposed so
that the sequence{x[n]} ={x,(nT)} can
uniquely represent the parent continuous-
timesignal X,(t)

In this case, x,(t) can be fully recovered
from {x[n]}
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The Sampling Process

o Example - Determine the discrete-time

signal v[n] obtained by uniformly sampling

al a sampling rate of 200 Hz the continuous-

time signal

V, (t) = 6cos(60r t) + 3sin(3007 t) + 2cos(340nt)
+ 4cos(500xt) +10sin(660mt)

* Note: v,(t) iscomposed of 5 sinusoidal

82

signals of frequencies 30 Hz, 150 Hz, 170
Hz, 250 Hz and 330 Hz
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The Sampling Process

+ The sampling period is T =2 = 0.005 sec
e The generated discrete-time signal v[n] Is
thus given by
v[n] = 6c0s(0.3xNn) + 3sin(1.57tN) + 2cos(1.77n)
+ 4cos(2.5mn) +10sin(3.3ntn)
= 6¢0s(0.37n) + 3sin((2r — 0.57)n) + 2cos((2rn — 0.3n)n)

+ 4COS((27I + 0.5n) n) +10s n((4n —0.77) n)
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The Sampling Process

= 6¢05(0.37tn) — 3sin(0.5tn) + 2c0s(0.3ntNn) + 4 cos(0.57tN)
—10sin(0.77tn)

= 8c0s(0.37n) + 5¢05(0.5tn+ 0.6435) —10sin(0.77n)

e Note: v[n] Iscomposed of 3 discrete-time
sinusoidal signals of normalized angular
frequencies. 0.3n, 0.5, and 0.7
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The Sampling Process

 Note: Anidentical discrete-time signal Is

85

also generated by uniformly sampling at a
200-Hz sampling rate the following
continuous-time signals.

W, (t) = 8cos(60rt) + 5cos(100xt + 0.6435) — 10sin(140xt)

g4 (t) = 2cos(60nt) + 4cos(100xrt) +10sin(260mt)
+ 6c08(4607t) + 3sin(7007t)
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The Sampling Process

21,
Qr

e Recdl Wg =

 Thusif Qt > 2Q,, then the corresponding
normalized digital angular frequency o, of
the discrete-time signal obtained by
sampling the parent continuous-time
sinusoidal signal will beintherange—nt<w<n

- BI) Noaliasing
86
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The Sampling Process

* On the other hand, If Q7 <2Q,, the
normalized digital angular frequency will
foldover into alower digital frequency
0, =(21Q,/ Q7)o intherange —n<w< =
because of aliasing

* Hence, to prevent aliasing, the sampling
frequency Q+ should be greater than 2

times the frequency Q, of the sinusoidal
signal being sampled
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The Sampling Process

o Generalization: Consider an arbitrary
continuous-time signal X, (t) composed of a
weighted sum of a number of sinusoidal
signals

e X,(t) can be represented uniquely by its
sampled version { x|n]} If the sampling
frequency Qt Ischosen to be greater than 2
times the highest frequency contained in

%
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The Sampling Process

* The condition to be satisfied by the
sampling freguency to prevent aliasing Is
called the sampling theorem

* A formal proof of thistheorem will be
presented | ater
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