LTI Discrete-Time Systems in
the Transform Domain

 AnLTI discrete-time system is completely
characterized in the time-domain by Its
Impul se response sequence { h[n]}

e Thus, the transform-domain representation
of adiscrete-time signal can also be equally
applied to the transform-domain

representation of an LTI discrete-time
system
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LTI Discrete-Time Systems in

the Transform Domain

e Such transform-domain representations
provide additional insight into the behavior
of such systems

e |tiseasier to design and implement these
systems in the transform-domain for certain
applications

e \WWe consider now the use of the DTFT and
the z-transform in developing the transform-
domain representations of an LTI system
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Finite-Dimensional LTI

Discrete-Time Systems

e |n this course we shall be concerned with
_TI discrete-time systems characterized by
Inear constant coefficient difference
equations of the form:

N M
> dy[n=K]= > p{n—K]
k=0 k=0
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Finite-Dimensional LTI

Discrete-Time Systems

o Applyingthe DTFT to the difference
equation and making use of the linearity and
the time-invariance properties of Table 3.2
we arrive at the input-output relation in the
transform-domain as

N . | M . _
> dee MY (€)= X pee X ()
k=0 k=0
whereY (e!®) and X (e!®) arethe DTFTs of
y[n] and x[n], respectively
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Finite-Dimensional LTI
Discrete-Time Systems

 In developing the transform-domain
representation of the difference equation, It
has been tacitly assumed that X (e'®) and
Y(el®) exist

* The previous equation can be alternately
written as

N . . M . .
Zde V)| Spe ok xer)
k=0 k=0
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Finite-Dimensional LTI

Discrete-Time Systems

Applying the z-transform to both sides of
the difference equation and making use of
the linearity and the time-invariance
properties of Table 3.9 we arrive at

N k M Kk
> Az ¥Y(2) = 3 Pz *X(2)
k=0 k=0

where Y(z) and X(z) denote the z-transforms
of y[n] and x[n] with associated ROCs,
respectively
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Finite-Dimensional LTI
Discrete-Time Systems

* A more convenient form of the z-domain
representation of the difference equation is
given by

N M
( dezk]Y(Z) = [ 2 pkzk]X(Z)
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The Frequency Response

 Most discrete-time signals encountered in
practice can be represented as alinear
combination of avery large, maybe infinite,
number of sinusoidal discrete-time signals
of different angular frequencies

e Thus, knowing the response of the LT]
system to a single sinusoidal signal, we can
determine its response to more complicated
signals by making use of the superposition
property
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The Frequency Response

 Animportant property of an LTI systemis
that for certain types of input signals, called
elgen functions, the output signal isthe
Input signal multiplied by a complex
constant

e \We consider here one such eigen function
as the input
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The Frequency Response

e Consider thelL

| discrete-time system with

an impulse response { h[n]} shown below

X[nN] —>  h[n] —— vyIn]

o |tsinput-output relationship in the time-
domain is given by the convolution sum

yinl= > HK]Xn—K]

10

K=—o0
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The Frequency Response

o If theinput isof theform
xnl=el®", —o<n<ow
then it follows that the output is given by

y[n] = Ozolh[k] ej(D(n—k) :( %O:h[k] e—jmkjej@n

k=—o0 k=—00

o Let | . |
H(e')= Yhikle "

K=—00

11
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The Frequency Response

e Then we can write
yin] = H(e!*)el*"
» Thusfor acomplex exponential input signal
e!/®™ the output of an LTI discrete-time
system Is also a complex exponential signal
of the same frequency multiplied by a
complex constant H (e'®)

e Thus e!®" isan eigen function of the system

12 _ _
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The Frequency Response

e The quantity H (el®) is called the frequency
response of the LTI discrete-time system

« H(el®) provides afrequency-domain
description of the system

« H(e!®) isprecisaly the DTFT of the impulse
response { h[n]} of the system

13 _ _
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The Frequency Response

e H(e!®), in general, isacomplex function
of o with aperiod 27

e It can be expressed in terms of its real and
Imaginary parts | |
H(e!®) = Hre(ejm) + ] Him(ejm)
or, in terms of its magnitude and phase,
H(el”) = H(e!*) e/

where |
6(w) =argH (e')

14 _ _
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The Frequency Response

« The function \H (eiw)\ is called the
magnitude r esponse and the function 6(w)
Is called the phase response of the LTI
discrete-time system

* Design specificationsfor the LTI discrete-
time system, in many applications, are
given in terms of the magnitude response or
the phase response or both

15 _ _
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The Frequency Response

 |n some cases, the magnitude function is
specified in decibelsas
G(w) = 20log;o H (elm)\ dB

where G(w) is called the gain function
* The negative of the gain function

A(0) =-G(w)

IS called the attenuation or loss function

16 _ _
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The Frequency Response

* Note: Magnitude and phase functions are
real functions of m, whereas the frequency
response Is a complex function of

o If the impulse response h[n] isreal then it
follows from Table 3.4 that the magnitude
function Is an even function of :

H(e®) = H(e )
and the phase function is an odd function of
% 0(®) = —0(—m)
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The Frequency Response
* Likewise, for areal impulse response h[n],
H,.(e'®)iseven and H;,(e'®) isodd

« Example - Consider the M-point moving
average filter with an impulse response

given by
h[n]:{lll\/l, 0<n<M -1

0, otherwise
* Itsfrequency response isthen given by

18 _ _
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The Frequency Response

o r’ H(eJ(D)_ 1( e jon Ze jo)nj

n=0 n=M

© . . — Mo
1 —jon |1 4~ iMo)_ 1 .1_9
_M( ye j(l e )—M T

1 Sn(Mo/2) _jm /2
M sin(w/ 2)
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The Frequency Response

* Thus, the magnitude response of the M-point
moving average filter is given by

1 SIN(Mw/2)

M sin(w/?2)

and the phase response Is given by

M-Do M 2 21k

+nk§Op (w— v )

H(e") =

O(w) =—

20 _ _
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Frequency Response
Computation Using MATLAB

 Thefunctionfreqz(h, w) canbeusedto
determine the values of the frequency
response vector h at aset of given
freguency pointsw

 From h, thereal and imaginary parts can be
computed using the functionsr eal and
| mag, and the magnitude and phase
functions using the functions abs and
angl e
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Frequency Response

Computation Using MATLAB

 Example - Program 4 1 can be used to
generate the magnitude and gain responses
of an M-point moving average filter as

shown below

1

o
(e}

o
o

Magnitude
o
e

o
N

o

100

SR

N
AR
’\
|

— M=5
— M=14

0.2

" Copyright,©,2001, S. K. Mitra
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Frequency Response
Computation Using MATLAB

* The phase response of adiscrete-time
system when determined by a computer

may exhibit jumps by an amount 2r caused
by the way the arctangent function is
computed

* The phase response can be made a
continuous function of » by unwrapping the
phase response across the jJumps
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Frequency Response
Computation Using MATLAB

e Tothisend the function unwr ap can be
used, provided the computed phaseisin
radians

e Thejumps by the amount of 2r should not
be confused with the jumps caused by the
zeros of the frequency response as indicated
In the phase response of the moving average
filter

24 _ _
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Steady-State Response

* Note that the frequency response also
determines the steady-state response of an
LTI discrete-time system to a sinusoidal
INput

» Example - Determine the steady-state
output y[n] of areal coefficient LTI
discrete-time system with a frequency
response H (el®) for an input

X[ n] = Acos(w N+ ¢), —o<N< o
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Steady-State Response

e \We can expressthe input X[n] as

x[n]=g[n]+g*[n]
where o
g[n] =1 AelPel®on

* Now the output of the system for an input
el®Mjssmply

H (ejmo)ejmon

Copyright © 2001, S. K. Mitra



Steady-State Response

e Because of linearity, the response v[n] to an
Input g[n] isgiven by

vin] = ; AeldH (ejwo)ej(ﬂon

o Likewise, the output v*[n] to the input g*[n]
IS

v*[n] :iAe‘j‘l)H CEEI i

27 _ _
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Steady-State Response

e Combining the last two equations we get

yin] =vin

— 1 ppl0
2Ae H

+Vv*[n]

J90)el®oN 4 1 Aa—jOH (e~ 190 )g= J®oN
(e!®o)el®o +2Ae H(e ®0)e %

— % AH (€l®0){ei®(@0)gitei®on 1 g~ 10(w0)g-idgjoon|

_1 jog
=3 A#H (el®0) cos(w N+ O6(m,) + )

28
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Steady-State Response

hus, the output y[n] has the same sinusoidal
waveform as the input with two differences.

(1) the amplitude is multiplied by‘H (el®o),
the value of the magnitude function at ® = o,

(2) the output has a phase lag relative to the

input by an amount 6(w,), the value of the
phase function at ® = ®,
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Response to a Causal

Exponential Sequence

* The expression for the steady-state response
developed earlier assumes that the system is
Initially relaxed before the application of
the input X[ n]

 |n practice, excitation x[n] to adiscrete-time
system is usually aright-sided sequence
applied at some sample index n=n,

* \We develop the expression for the output
for such an input

30 _ _
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Response to a Causal

Exponential Sequence

 Without any loss of generality, assume x{n] =0
forn<O

* From the input-output relation

yin] =2, hikIX(n—K]

we observe that for an input

X{n] =el*"u[n]
the output Is given by

Vi = [ 3" Hk] el ju[n]

31 k=0
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Response to a Causal
Exponential Sequence

« Or, yin] :[Zn:h[k] g Jok jej@”p[n]

k=0

 Theoutput forn<0isy[n] =0
* The output for n>0 isgiven by

y[n] :[Zn:h[k]ej(”k jeiw“

k=0

:[Zh[k]ej@kjej@”—( Zh[k]ej‘”kjej“’”
32 k=0 K=n+1
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Response to a Causal
Exponential Sequence

e Or,

yin] =H (el®)elen —[ fh[k] g oK jeiw”

k=n+1
e Thefirst term on the RHS isthe same as
that obtained when the input is applied at
n=0toaninitially relaxed system and is
the steady-state response:
Yg[N]=H (ejm)ejmn

33 _ _
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Response to a Causal
Exponential Sequence

e The second term on the RHS Is called the
transient response:

ytr[n]=—( > hik]e-iok ]ei@n

k=n+1

e To determine the effect of the above term
on the total output response, we observe

VoIl = ShHKle 1ok < S hk] < 3 hk]
k=n+1 k=n+1 k=0

Copyright © 2001, S. K. Mitra
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Response to a Causal
Exponential Sequence
e For acausal, stable LTI IIR discrete-time

system, h[n] is absolutely summable

« Asaresult, the transient response Yy [N] isa
bounded sequence

e Moreover,asn— o,
Zokozn+1‘ h[ k]‘ —0

and hence, the transient response decays to
Zero as n getsvery large

35 _ _
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Response to a Causal

Exponential Sequence

e Foracausal FIR LTI discrete-time system
with an impulse response h[n] of length
=0forn>N

N+ 1 h[n]=

e Hence, i,

n

* Herethe out ches
value yg[n]=H (e!/®)e!®Man=N

36

=0forn>N-1

out reaches the steady-state
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The Concept of Filtering

e One application of an LTI discrete-time
system Is to pass certain frequency
components in an Input sequence without
any distortion (if possible) and to block
other frequency components

e Such systems are called digital filters and
one of the main subjects of discussion In
this course

37 _ _
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The Concept of Filtering

* The key to thefiltering processis

X{n]=1 [ X (e'®)e!®"dw
o |t expresses an arbitrary input as alinear
weighted sum of an infinite number of
exponential sequences, or equivalently, asa
linear welghted sum of sinusoidal sequences

38 _ _
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The Concept of Filtering

hus, by appropriately choosing the values
of the magnitude function ‘H (eJ‘”)‘ of the
LTI digital filter at frequencies
corresponding to the frequencies of the
sinusoidal components of the input, some of
these components can be selectively heavily
attenuated or filtered with respect to the
others
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The Concept of Filtering

0 understand the mechanism behind the
design of frequency-selective filters,
consider areal-coefficient LTI discrete-time
system characterized by a magnitude
function

H(el®) ;{

X ® <o
0, w;<®<m
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The Concept of Filtering

e \WWe apply an input
X[ n] = Acosm;n+ Bcosw-n, O<oy<m <y <™
to this system

* Because of linearity, the output of this
system is of the form

vin] = 4"' (ej“’l)‘cos(wlﬂ +6(07))
+ B‘H (eJ"*’Z)\COE‘(@z”Jr 0(w2))

Copyright © 2001, S. K. Mitra
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The Concept of Filtering

e AS
H(el®) =1, H(el®2) =0
the output reduces to
yin] = QH (ej‘*’l)‘ cos(an+0(w))
e Thus, the system acts like alowpass filter
* Inthefollowing example, we consider the
design of avery smpledigital filter

42 _ _
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The Concept of Filtering

* Example - Theinput consists of a sum of two
sinusoidal sequences of angular frequencies
0.1 rad/sample and 0.4 rad/sample

* \We need to design a highpass filter that will
pass the high-frequency component of the
Input but block the low-frequency component

* For ssimplicity, assume thefilter to bean FIR
filter of length 3 with an impulse response:
h[O] =h[2]=a,  h[1] =

43 _ _
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The Concept of Filtering

* The convolution sum description of this
filter 1sthen given by

yln] = h[O]X{n] + h[1] X[n—-1] + N[ 2] X[n—2]
=oXN]+pXN-1+axn-2]

 y[n] and x| n] are, respectively, the output
and the Input sequences

e Design ODbjective: Choose suitable values
of oo and B so that the output Is a sinusoidal
sequence with afrequency 0.4 rad/sample

Copyright © 2001, S. K. Mitra
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The Concept of Filtering

* Now, the frequency response of the FIR
filter 1sgiven by
H (el®) = h[0] + h[] e 1@ + h[2] e~ 12

= o (l+e 120) 4 el

ej(D _|_e_j00 . .
=20L( 5 )eJ“’JrﬁeJ“’

= (20.cos® + B)e 1

45 _ _
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The Concept of Filtering

* The magnitude and phase functions are
‘H (eJ(’))‘ = 20.Co0Sm + 3
O(w) =—o

 |n order to block the low-freguency
component, the magnitude function at
® = 0.1 should be equal to zero

e Likewise, to pass the high-frequency
component, the magnitude function at
® = 0.4 should be equal to one

Copyright © 2001, S. K. Mitra
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The Concept of Filtering

e Thus, the two conditions that must be
satisfied are

- (elo-l)‘ =20.c05(0.) +B =0

H (e 0-4)‘ =20.c05(0.4) + B =1

« Solving the above two equations we get

o =—6.76195
B =13.456335

47 _ _
Copyright © 2001, S. K. Mitra



The Concept of Filtering

 Thus the output-input relation of the FIR
filter s given by
y[n] = —6.76195(X n] + X[n—2])+13.456335x n—1]
wherethe input Is
X[ n] ={cos(0.1n) + cos(0.4n)}u[Nn]
* Program 4 2 can be used to verify the
filtering action of the above system

48 _ |
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The Concept of Filtering

* Figure below shows the plots generated by
running this program

il
‘ i i — yIn]
| | | Xl
. s S x|
gol
= | | |
'T;l L i i i
< N\ NN TN Y AN AN
/a / N W \ // \\ / \
of o L N g N
\\Z i\\ //// \\\ i // \\ // \\\ // / i \\ /// \
AN N N N N N
0 20 40 60 80 100
Timeindex n
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The Concept of Filtering

e Thefirst seven samples of the output are

shown below
n cos(0.1n) cos(0.4n) x[n] y[n]
0 1.0 1.0 2.0 —13.52390
1 0.9950041 0.9210609 1.9160652 13.956333
2 0.9800665 0.6967067 1.6767733 0.9210616
3 0.9553364 0.3623577 1.3176942 0.6967064
4 0.9210609 —0.0291995 (0.8B918614 0.3623572
5 0.8775825 —0.4161468 0.4614357 —0.0292002
6 0.8253356 —=0.7373937 0.0879419 —0.4161467
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The Concept of Filtering

From this table, it can be seen that,

neglecting the least significant digit,
y[n] = cos(0.4(n—-1)) for n> 2

Computation of the present value of the

output requires the knowledge of the
present and two previous input samples

Hence, the first two output samples, y| O]
and y[1], are the result of assumed zero
Input samplevaluesat n=-1and n=-2
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The Concept of Filtering

o Therefore, first two output samples
constitute the transient part of the output

o Since the impulse response is of length 3,
the steady-state isreachedat n =N = 2

* Note also that the output is delayed version
of the high-frequency component cos(0.4n)
of the input, and the delay I1s one sample
period

52 _ _
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