Stability Condition in Terms of
the Pole Locations

o A causal LTI digital filter isBIBO stable If
and only If itsimpulse response h[n] Is
absolutely summable, I.e.,

S = > h[n]<ew
N=—o00
* \We now develop a stability condition Iin
terms of the pole locations of the transfer
function H(2)
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Stability Condition in Terms of
the Pole Locations

 The ROC of the z-transform H(z) of the
Impul se response sequence h[n] is defined
by values of |z] = r for which h[n]r " is
absolutely summable

e Thus, if the ROC includes the unit circle |Z
=1, then the digital filter is stable, and vice
versa
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Stability Condition in Terms of
the Pole Locations

 |Inaddition, for a stable and
filter for which h[n] isarig
seguence, the ROC will inc

causal digital
nt-sided
ude the unit

circle and entire z-plane including the point

2 =00

 AnFIR digital filter with bounded impulse

response Is always stable
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Stability Condition in Terms of
the Pole Locations

e On the other hand, an IIR filter may be
unstable If not designed properly

 Inaddition, an originally stable IR filter
characterized by infinite precision
coefficients may become unstable when
coefficients get quantized due to
Implementation
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Stability Condition in Terms of
the Pole Locations

 Example - Consider the causal IR transfer
function

H(2) =

1
1-1.845z1 + 0.85058627 2

* The plot of the impulse response coefficients
IS shown on the next dide
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Stability Condition in Terms of
the Pole Locations
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* Ascan be seen from the above plot, the
Impul se response coefficient h[n] decays
rapidly to zero value as n increases
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Stability Condition in Terms of
the Pole Locations

 The absolute summability condition of h[n]
1S satisfied

* Hence, H(2) is astable transfer function

 Now, consider the case when the transfer
function coefficients are rounded to values
with 2 digits after the decimal point:

A 1
H(2)= 1 2
1-1.85z "+ 0.85z
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Stability Condition in Terms of
the Pole Locations

A plot of the Impulse response of ﬁ[n] IS
snown below
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Stability Condition in Terms of
the Pole Locations

* Inthiscase, the iImpulse response coefficient
h[ n] increases rapidly to a constant value as
N increases

* Hence, the absolute summability condition of
Isviolated

e Thus, ﬁ(z) IS an unstabl e transfer function
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Stability Condition in Terms of

the Pole Locations

o The stability testing of allR transfer
function is therefore an important problem

e In most cases it isdifficult to compute the
Infinite sum
S= Z;O:_oo‘h[n]‘ < 00
e For acausal IIR transfer function, the sum S
can be computed approximately as

10 Sk = Zrlf:_(ﬁh[n]‘
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Stability Condition in Terms of

the Pole Locations

e The partial sum is computed for increasing
values of K until the difference between a
series of consecutive values of Sx IS
smaller than some arbitrarily chosen small
number, which is typically 107°

e For atransfer function of very high order
this approach may not be satisfactory

* An alternate, easy-to-test, stability condition
IS devel oped next
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Stability Condition in Terms of
the Pole Locations

e Consider the causal |IR digital filter with a
rational transfer function H(z) given by

lel/l:o pkz_k

ZEI:Ode_k

 |tsimpulseresponse {h[n]} Isaright-sided
seguence

 The ROC of H(2) is exterior to acircle
going through the pole furthest fromz =20
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Stability Condition in Terms of
the Pole Locations

o But stability requiresthat { h[n]} be
absolutely summable

e Thisin turnimpliesthat the DTFT H (e!®)
of {N[n]} exists

* Now, If the ROC of the z-transform H(2)
Includes the unit circle, then

H(el®) = H(2)

7=el®

13
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Stability Condition in Terms of
the Pole Locations

e Conclusion: All polesof acausal stable
transfer function H(z) must be strictly inside
the unit circle

e The stahility region (shown shaded) in the
z-plane is shown below

jimz
J

/X stability region
1 /1 Rez
14 unit circle—~
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Stability Condition in Terms of
the Pole Locations

e Example - The factored form of

H (2) = -
1-0.8457110.8505867 2

IS
1
H(2)= 1 0.00271)1-09437Y)
which hasareal poleat z=0.902 and area

poleat z=0.943

» Since both poles are inside the unit circle,
H(z) isBIBO stable

15
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Stability Condition in Terms of
the Pole Locations
e Example - The factored form of

A 1
H(2)=
_ (2) 1-1.8521+0.85272
1S . 1
H(2)

T (1-z1H(1-0.85z1)
which has areal pole on the unit circleat z
= 1 and the other pole inside the unit circle

» Since both poles are not inside the unit

. circle H(z) isunstable
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Types of Transfer Functions

he time-domain classification of an LTI
digital transfer function sequence is based
on the length of its impulse response:

- Finite impulse response (FIR) transfer
function

- Infinite Impulse response (IIR) transfer
function
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Types of Transfer Functions

e Several other classifications are also used

 Inthe case of digital transfer functions with
frequency-selective frequency responses,
one classification is based on the shape of
the magnitude function |H (e!®)|or the form
of the phase function ()

e Based on thisfour types of ideal filters are
usually defined
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ldeal Filters

o A digital filter designed to pass signal
components of certain frequencies without
distortion should have a frequency response
equal to one at these frequencies, and

should have a frequency response equal to
zero at all other frequencies
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ldeal Filters

e Therange of frequencies where the

frequency response takes the value of oneis
called the passband

e Therange of freguencies where the

frequency response takes the value of zero
IS called the stopband

20
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ldeal Filters

* Frequency responses of the four popular types
of ideal digital filters with real impulse
response coefficients are shown below:

H‘,_Ftr‘fmi H.rm”"im'
| |
0 . )
—x —w, 0 n - Uk 0 n 3
L owpass Highpass
HEP(Ejm) Hssi‘fjm)
1 | —
' t @ } — (0
—T - 04 - W T -t 00 04 e W T
21 Bandpass Bandstop
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ldeal Filters

» Lowpassfilter: Passband - 0<» < o,
Stopband - O <® =T
o Highpassfilter: Passband - o, <o <m
Stopband - 0< < ®,
e Bandpassfilter: Passband - wg <o < 0¢s
Stopband - 0w <y AN O <O T
Stopband - ®y < ® < ®co
Passband -0< o<y and 0 SO<T

22
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ldeal Filters

» Thefrequencies o , w1 , and o, are called
the cutoff frequencies

* Anidea filter has a magnitude response
equal to one In the passbhand and zero in the
stopband, and has a zero phase everywhere

23
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ldeal Filters

e Earlier in the course we derived the inverse

DTFT of the frequency response H, p(€!®)
of the ideal lowpass filter:

hp[n] =212 o <n<ow
mn
* \We have aso shown that the above impulse
response is not absolutely summable, and

hence, the corresponding transfer function
Isnot BIBO stable
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ldeal Filters

 Also, hyp[n] I1snot causal and is of doubly
Infinite length
 Theremaining threeideal filtersare aso

characterized by doubly infinite, noncausal

Impul se responses and are not absolutely
summable

e Thus, theideal filterswith the ideal “brick
wall” freguency responses cannot be
realized with finite dimensional LTI filter
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ldeal Filters

* To develop stable and realizable transfer
functions, the ideal frequency response
specifications are relaxed by including a
transition band between the passband and
the stopband

e This permits the magnitude response to
decay slowly from its maximum value in
the passband to the zero value in the
stopband
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ldeal Filters

 Moreover, the magnitude response Is
allowed to vary by asmall amount both in

the passband and the stopband

o Typical magnitude response specifications
of alowpassfilter are shown below

]
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Zero-Phase and Linear-Phase
Transfer Functions

e A second classification of atransfer

function 1s with respect to its phase
characteristics

 In many applications, it Is necessary that the
digital filter designed does not distort the
phase of the input signal components with
frequencies in the passband

28
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Zero-Phase and Linear-Phase
Transfer Functions

e One way to avoid any phase distortion isto
make the frequency response of the filter
real and nonnegative, i.e., to design the
filter with azero phase characteristic

 However, it Is possible to design a causal
digital filter with a zero phase
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Zero-Phase and Linear-Phase
Transfer Functions

* For non-real-time processing of real-valued
Input signals of finite length, zero-phase
filtering can be very ssmply implemented by
relaxing the causality reguirement

* One zero-phase filtering scheme is sketched
below

XN —> H@ — vIin| un] — H@ — wn]

uln] =v{-nl,  y[n]=w-n]

Copyright © 2001, S. K. Mitra
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Zero-Phase and Linear-Phase

Transfer Functions

 |tiseasy to verify the above schemein the
freguency domain

e Let X(el?), V(el®) ,U(e!®) W(e!®), and
Y (e!®) denote the DTFTsof x[n], vn],
u[n], win], and y[n], respectively

e From the figure shown earlier and making
use of the symmetry relations we arrive at
the relations between various DTFTs as
given on the next slide

31
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Zero-Phase and Linear-Phase
Transfer Functions

X[n] —> H@ — Vinl

u[n] = v[—n],
V(el®)=H(el®) X (el®),
U(el®) =V*(el®),

uln] — H(@ —win|

y[n] =w-n]

W(el®) =H(el®)u (el®)
Y(el®) =W+ (el®)

» Combining the apove equations we get
Y(el®)=W*(el®) =H * (el®)U * (el®)

=H* (el®)V(el®) =F

32 —

* (el®) H(el®) X(e)®)
H (el®) X (el®)
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Zero-Phase and Linear-Phase
Transfer Functions

e Thefunctionfftfilt implementsthe
above zero-phase filtering scheme

 Inthe case of acausal transfer function with
a nonzero phase response, the phase
distortion can be avoided by ensuring that
the transfer function has a unity magnitude
and alinear-phase characteristic in the
frequency band of interest
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Zero-Phase and Linear-Phase
Transfer Functions

 The most general type of afilter with a
linear phase has a frequency response given
by

H (e!®) = g~ 1©D
which has alinear phasefromo =0to w =
2T
 Notealso ‘H (ejm)‘ =1
T(w)=D
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Zero-Phase and Linear-Phase

Transfer Functions
e The output y[n] of thisfilter to an input
x[n] = Ae!®" isthen given by
y[n] — Ae J(DDej(Dn Aejco(n D)

 If X, (t) and y,(t) represent the continuous-
time signals whose sampled versions,
sampled at t = nT, are x[n] and y[n] given
above, then the delay between x, (t) and y,(t)
IS precisely the group delay of amount D

35
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Zero-Phase and Linear-Phase
Transfer Functions

e |f DIsan integer, then y[n] isidentical to
X[n], but delayed by D samples

o If D isnot an integer, y[n], being delayed by
afractional part, isnot identical to x[n]

 Inthe latter case, the waveform of the
underlying continuous-time output 1S
Identical to the waveform of the underlying
continuous-time input and delayed D units
of time
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Zero-Phase and Linear-Phase
Transfer Functions

o |fItisdesiredto passinput signal
components in a certain freguency range
undistorted in both magnitude and phase,
then the transfer function should exhibit a
unity magnitude response and a linear-phase
response in the band of interest
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Zero-Phase and Linear-Phase

Transfer Functions

* Figure below shows the frequency response
If alowpass filter with alinear-phase
characteristic in the passband

Hyp(el)|

1

38 SR N
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Zero-Phase and Linear-Phase
Transfer Functions

e Sincethe sighal components in the stopband
are blocked, the phase response in the
stopband can be of any shape

 Example - Determine the impulse response
of an ideal lowpass filter with alinear phase
response:

i oMo - 0<|m < o
H, o(ei®y=1% "% c
P(E) { 0, o;<l®<m

39
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Zero-Phase and Linear-Phase
Transfer Functions

* Applying the frequency-shifting property of
the DTFT to the impulse response of an
Ideal zero-phase lowpass filter we arrive at

Sno.(n—ny)
n(n—ny)

th[n]: , —O0<N<K

e Asbefore, the above filter Is noncausal and

of doubly infinite length, and hence,
unrealizable

40
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Zero-Phase and Linear-Phase
Transfer Functions

e By truncating the impulse response to a
finite number of terms, arealizable FIR

approximation to the ideal lowpass filter
can be developed

e The truncated approximation may or may
not exhibit linear phase, depending on the
value of n, chosen

Copyright © 2001, S. K. Mitra



Zero-Phase and Linear-Phase
Transfer Functions

* |f we choose n,= N/2 with N apositive
Integer, the truncated and shifted
approximation

A sSnw.(N—N/2)
h p[N] = ¢ ,
LA a(n—N/2)

will be alength N+1 causal linear-phase
FIR filter

O0<n<N

42
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Zero-Phase and Linear-Phase
Transfer Functions

e Figure below shows the filter coefficients

obtained using the function si nc for two
different values of N

N =12
0.6 T T T

N=13
0.6 :
0.4 0.4+
= 02/ 1 %o.zf
2 2
i i P ¢ T T ? 9
(04 0
) ) o4 b
02 2 4 6 g 10 12 02 > 4 6
43 Timeindex n

8 10 12
Timeindex n
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Zero-Phase and Linear-Phase
Transfer Functions

e Because of the symmetry of the impulse
response coefficients as indicated in the two
figures, the frequency response of the

truncated approximation can be expressed as.

A . N A . . ~

H p(el®)= > hp[nje lon =g loNZH, ()
n=0

where H, p (), called the zer o-phase

response or amplitude response, isareal

function of
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