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Stability Condition in Terms ofStability Condition in Terms of
the Pole Locationsthe Pole Locations

• A causal LTI digital filter is BIBO stable if
and only if its impulse response h[n] is
absolutely summable, i.e.,

• We now develop a stability condition in
terms of the pole locations of the transfer
function H(z)

∞<= ∑
∞

−∞=n
nh ][S



2
Copyright © 2001, S. K. Mitra

Stability Condition in Terms ofStability Condition in Terms of
the Pole Locationsthe Pole Locations

• The ROC of the z-transform H(z) of the
impulse response sequence h[n] is defined
by values of |z| = r for which              is
absolutely summable

• Thus, if the ROC includes the unit circle |z|
= 1, then the digital filter is stable, and vice
versa
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Stability Condition in Terms ofStability Condition in Terms of
the Pole Locationsthe Pole Locations

• In addition, for a stable and causal digital
filter for which h[n] is a right-sided
sequence, the ROC will include the unit
circle and entire z-plane including the point

• An FIR digital filter with bounded impulse
response is always stable
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Stability Condition in Terms ofStability Condition in Terms of
the Pole Locationsthe Pole Locations

• On the other hand, an IIR filter may be
unstable if not designed properly

• In addition, an originally stable IIR filter
characterized by infinite precision
coefficients may become unstable when
coefficients get quantized due to
implementation
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Stability Condition in Terms ofStability Condition in Terms of
the Pole Locationsthe Pole Locations

• Example - Consider the causal IIR transfer
function

• The plot of the impulse response coefficients
is shown on the next slide
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Stability Condition in Terms ofStability Condition in Terms of
the Pole Locationsthe Pole Locations

• As can be seen from the above plot, the
impulse response coefficient h[n] decays
rapidly to zero value as n increases
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Stability Condition in Terms ofStability Condition in Terms of
the Pole Locationsthe Pole Locations

• The absolute summability condition of h[n]
is satisfied

• Hence, H(z) is a stable transfer function
• Now, consider the case when the transfer

function coefficients are rounded to values
with 2 digits after the decimal point:
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Stability Condition in Terms ofStability Condition in Terms of
the Pole Locationsthe Pole Locations

• A plot of the impulse response of          is
shown below
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Stability Condition in Terms ofStability Condition in Terms of
the Pole Locationsthe Pole Locations

• In this case, the impulse response coefficient
   increases rapidly to a constant value as

n increases
• Hence, the absolute summability condition of

is violated
• Thus,          is an unstable transfer function
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Stability Condition in Terms ofStability Condition in Terms of
the Pole Locationsthe Pole Locations

• The stability testing of a IIR transfer
function is therefore an important problem

• In most cases it is difficult to compute the
infinite sum

• For a causal IIR transfer function, the sum S
can be computed approximately as

∞<=∑∞
−∞=n nh ][S

∑ −
== 1

0
K
n nh ][SK



11
Copyright © 2001, S. K. Mitra

Stability Condition in Terms ofStability Condition in Terms of
the Pole Locationsthe Pole Locations

• The partial sum is computed for increasing
values of K until the difference between a
series of consecutive values of        is
smaller than some arbitrarily chosen small
number, which is typically

• For a transfer function of very high order
this approach may not be satisfactory

• An alternate, easy-to-test, stability condition
is developed next
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Stability Condition in Terms ofStability Condition in Terms of
the Pole Locationsthe Pole Locations

• Consider the causal IIR digital filter with a
rational transfer function H(z) given by

• Its impulse response {h[n]} is a right-sided
sequence

• The ROC of H(z) is exterior to a circle
going through the pole furthest from z = 0
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Stability Condition in Terms ofStability Condition in Terms of
the Pole Locationsthe Pole Locations

• But stability requires that {h[n]} be
absolutely summable

• This in turn implies that the DTFT
of {h[n]} exists

• Now, if the ROC of the z-transform H(z)
includes the unit circle, then
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Stability Condition in Terms ofStability Condition in Terms of
the Pole Locationsthe Pole Locations

• Conclusion:  All poles of a causal stable
transfer function H(z) must be strictly inside
the unit circle

• The stability region (shown shaded) in the
z-plane is shown below
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Stability Condition in Terms ofStability Condition in Terms of
the Pole Locationsthe Pole Locations

• Example - The factored form of

is

which has a real pole at z = 0.902 and a real
pole at z = 0.943

• Since both poles are inside the unit circle,
H(z) is BIBO stable
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Stability Condition in Terms ofStability Condition in Terms of
the Pole Locationsthe Pole Locations

• Example - The factored form of

is

which has a real pole on the unit circle at z
= 1 and the other pole inside the unit circle

• Since both poles are not inside the unit
circle, H(z) is unstable
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Types of Transfer FunctionsTypes of Transfer Functions

• The time-domain classification of an LTI
digital transfer function sequence is based
on the length of its impulse response:
- Finite impulse response (FIR) transfer
function
- Infinite impulse response (IIR) transfer
function
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Types of Transfer FunctionsTypes of Transfer Functions

• Several other classifications are also used
• In the case of digital transfer functions with

frequency-selective frequency responses,
one classification is based on the shape of
the magnitude function               or the form
of the phase function θ(ω)

• Based on this four types of ideal filters are
usually defined
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Ideal FiltersIdeal Filters

• A digital filter designed to pass signal
components of certain frequencies without
distortion should have a frequency response
equal to one at these frequencies, and
should have a frequency response equal to
zero at all other frequencies
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Ideal FiltersIdeal Filters

• The range of frequencies where the
frequency response takes the value of one is
called the passband

• The range of frequencies where the
frequency response takes the value of zero
is called the stopband
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Ideal FiltersIdeal Filters
• Frequency responses of the four popular types

of ideal digital filters with real impulse
response coefficients are shown below:

Lowpass Highpass

Bandpass Bandstop
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Ideal FiltersIdeal Filters
• Lowpass filter:  Passband -
                              Stopband -
• Highpass filter:  Passband -
                              Stopband -
• Bandpass filter:  Passband -
               Stopband -
• Bandstop filter:  Stopband -
               Passband -

cω≤ω≤0
π≤ω<ωc

π≤ω≤ωc

cω<ω≤0

21 cc ω≤ω≤ω

10 cω<ω≤ π≤ω<ω 2cand

21 cc ω<ω<ω

10 cω≤ω≤ π≤ω≤ω 2cand



23
Copyright © 2001, S. K. Mitra

Ideal FiltersIdeal Filters

• The frequencies      ,       , and        are called
the cutoff frequencies

• An ideal filter has a magnitude response
equal to one in the passband and zero in the
stopband, and has a zero phase everywhere

cω 1cω 2cω
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Ideal FiltersIdeal Filters
• Earlier in the course we derived the inverse

DTFT of the frequency response
of the ideal lowpass filter:

• We have also shown that the above impulse
response is not absolutely summable, and
hence, the corresponding transfer function
is not BIBO stable
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Ideal FiltersIdeal Filters
• Also,             is not causal and is of doubly

infinite length
• The remaining three ideal filters are also

characterized by doubly infinite, noncausal
impulse responses and are not absolutely
summable

• Thus, the ideal filters with the ideal “brick
wall” frequency responses cannot be
realized with finite dimensional LTI filter

][nhLP
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Ideal FiltersIdeal Filters
• To develop stable and realizable transfer

functions, the ideal frequency response
specifications are relaxed by including a
transition band between the passband and
the stopband

• This permits the magnitude response to
decay slowly from its maximum value in
the passband to the zero value in the
stopband
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Ideal FiltersIdeal Filters
• Moreover, the magnitude response is

allowed to vary by a small amount both in
the passband and the stopband

• Typical magnitude response specifications
of a lowpass filter are shown below
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Zero-Phase and Linear-PhaseZero-Phase and Linear-Phase
Transfer FunctionsTransfer Functions

• A second classification of a transfer
function is with respect to its phase
characteristics

• In many applications, it is necessary that the
digital filter designed does not distort the
phase of the input signal components with
frequencies in the passband
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Zero-Phase and Linear-PhaseZero-Phase and Linear-Phase
Transfer FunctionsTransfer Functions

• One way to avoid any phase distortion is to
make the frequency response of the filter
real and nonnegative, i.e., to design the
filter with a zero phase characteristic

• However, it is possible to design a causal
digital filter with a zero phase
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Zero-Phase and Linear-PhaseZero-Phase and Linear-Phase
Transfer FunctionsTransfer Functions

• For non-real-time processing of real-valued
input signals of finite length, zero-phase
filtering can be very simply implemented by
relaxing the causality requirement

• One zero-phase filtering scheme is sketched
below

x[n] v[n] u[n] w[n]H(z) H(z)
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Zero-Phase and Linear-PhaseZero-Phase and Linear-Phase
Transfer FunctionsTransfer Functions

• It is easy to verify the above scheme in the
frequency domain

• Let             ,              ,             ,             , and
       denote the DTFTs of x[n], v[n],

u[n], w[n], and y[n], respectively
• From the figure shown earlier and making

use of the symmetry relations we arrive at
the relations between various DTFTs as
given on the next slide
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Zero-Phase and Linear-PhaseZero-Phase and Linear-Phase
Transfer FunctionsTransfer Functions

• Combining the above equations we get

x[n] v[n] u[n] w[n]H(z) H(z)

][][],[][ nwnynvnu −=−=
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Zero-Phase and Linear-PhaseZero-Phase and Linear-Phase
Transfer FunctionsTransfer Functions

• The function fftfilt implements the
above zero-phase filtering scheme

• In the case of a causal transfer function with
a nonzero phase response, the phase
distortion can be avoided by ensuring that
the transfer function has a unity magnitude
and a linear-phase characteristic in the
frequency band of interest
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Zero-Phase and Linear-PhaseZero-Phase and Linear-Phase
Transfer FunctionsTransfer Functions

• The most general type of a filter with a
linear phase has a frequency response given
by

which has a linear phase from ω = 0 to ω =
2π

• Note also
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Zero-Phase and Linear-PhaseZero-Phase and Linear-Phase
Transfer FunctionsTransfer Functions

• The output y[n] of this filter to an input
         is then given by

• If          and          represent the continuous-
time signals whose sampled versions,
sampled at t = nT, are x[n] and y[n] given
above, then the delay between          and
is precisely the group delay of amount D
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Zero-Phase and Linear-PhaseZero-Phase and Linear-Phase
Transfer FunctionsTransfer Functions

• If D is an integer, then y[n] is identical to
x[n], but delayed by D samples

• If D is not an integer, y[n], being delayed by
a fractional part, is not identical to x[n]

• In the latter case, the waveform of the
underlying continuous-time output is
identical to the waveform of the underlying
continuous-time input and delayed D units
of time
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Zero-Phase and Linear-PhaseZero-Phase and Linear-Phase
Transfer FunctionsTransfer Functions

• If it is desired to pass input signal
components in a certain frequency range
undistorted in both magnitude and phase,
then the transfer function should exhibit a
unity magnitude response and a linear-phase
response in the band of interest
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Zero-Phase and Linear-PhaseZero-Phase and Linear-Phase
Transfer FunctionsTransfer Functions

• Figure below shows the frequency response
if a lowpass filter with a linear-phase
characteristic in the passband
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Zero-Phase and Linear-PhaseZero-Phase and Linear-Phase
Transfer FunctionsTransfer Functions

• Since the signal components in the stopband
are blocked, the phase response in the
stopband can be of any shape

• Example - Determine the impulse response
of an ideal lowpass filter with a linear phase
response:
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Zero-Phase and Linear-PhaseZero-Phase and Linear-Phase
Transfer FunctionsTransfer Functions

• Applying the frequency-shifting property of
the DTFT to the impulse response of an
ideal zero-phase lowpass filter we arrive at

• As before, the above filter is noncausal and
of doubly infinite length, and hence,
unrealizable
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Zero-Phase and Linear-PhaseZero-Phase and Linear-Phase
Transfer FunctionsTransfer Functions

• By truncating the impulse response to a
finite number of terms, a realizable FIR
approximation to the ideal lowpass filter
can be developed

• The truncated approximation may or may
not exhibit linear phase, depending on the
value of      chosenon
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Zero-Phase and Linear-PhaseZero-Phase and Linear-Phase
Transfer FunctionsTransfer Functions

• If we choose     = N/2 with N a positive
integer, the truncated and shifted
approximation

will be a length N+1 causal linear-phase
FIR filter
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Zero-Phase and Linear-PhaseZero-Phase and Linear-Phase
Transfer FunctionsTransfer Functions

• Figure below shows the filter coefficients
obtained using the function sinc for two
different values of N
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Zero-Phase and Linear-PhaseZero-Phase and Linear-Phase
Transfer FunctionsTransfer Functions

• Because of the symmetry of the impulse
response coefficients as indicated in the two
figures, the frequency response of the
truncated approximation can be expressed as:

where              , called the zero-phase
response or amplitude response, is a real
function of ω
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