Basic IIR Digital Filter Structures

- The causal IIR digital filters we are concerned with in this course are characterized by a real rational transfer function of z^{-1} or, equivalently by a constant coefficient difference equation
- From the difference equation representation, it can be seen that the realization of the causal IIR digital filters requires some form of feedback

Basic IIIR Digital Filter Structures

- An N-th order IIR digital transfer function is characterized by $2 N+1$ unique coefficients, and in general, requires $2 N+1$ multipliers and $2 N$ two-input adders for implementation
- Direct form IIR filters: Filter structures in which the multiplier coefficients are precisely the coefficients of the transfer function

Direct Form IIR Digital Filter Structures

- Consider for simplicity a 3rd-order IIR filter with a transfer function

$$
H(z)=\frac{P(z)}{D(z)}=\frac{p_{0}+p_{1} z^{-1}+p_{2} z^{-2}+p_{3} z^{-3}}{1+d_{1} z^{-1}+d_{2} z^{-2}+d_{3} z^{-3}}
$$

- We can implement $H(z)$ as a cascade of two filter sections as shown on the next slide

Direct Form IIR Digital Filter Structures

where

$$
\begin{aligned}
& H_{1}(z)=\frac{W(z)}{X(z)}=P(z)=p_{0}+p_{1} z^{-1}+p_{2} z^{-2}+p_{3} z^{-3} \\
& H_{2}(z)=\frac{Y(z)}{W(z)}=\frac{1}{D(z)}=\frac{1}{1+d_{1} z^{-1}+d_{2} z^{-2}+d_{3} z^{-3}}
\end{aligned}
$$

Direct Form IIR Digital Filter Structures

- The filter section $H_{1}(z)$ can be seen to be an FIR filter and can be realized as shown below
$w[n]=p_{0} x[n]+p_{1} x[n-1]+p_{2} x[n-2]+p_{3} x[n-3]$

Direct Form IIR Digital Filter Structures

- The time-domain representation of $\mathrm{H}_{2}(z)$ is given by
$y[n]=w[n]-d_{1} y[n-1]-d_{2} y[n-2]-d_{3} y[n-3]$
Realization of $\mathrm{H}_{2}(z)$ follows from the above equation and is shown on the right

Direct Form IIR Digital Filter Structures

- A cascade of the two structures realizing $H_{1}(z)$ and $H_{2}(z)$ leads to the realization of $H(z)$ shown below and is known as the direct form I structure

Direct Form IIR Digital Filter Structures

- Note: The direct form I structure is noncanonic as it employs 6 delays to realize a 3rd-order transfer function
- A transpose of the direct form I structure is shown on the right and is called the direct form I_{t} structure

Direct Form IIR Digital Filter Structures

- Various other noncanonic direct form structures can be derived by simple block diagram manipulations as shown below

Direct Form IIR Digital Filter Structures

- Observe in the direct form structure shown below, the signal variable at nodes (1) and (1) are the same, and hence the two top delays can be shared

Direct Form IIR Digital Filter Structures

- Likewise, the signal variables at nodes (2) and (2) are the same, permitting the sharing of the middle two delays
- Following the same argument, the bottom two delays can be shared
- Sharing of all delays reduces the total number of delays to 3 resulting in a canonic realization shown on the next slide along with its transpose structure

Direct Form IIR Digital Filter Structures

- Direct form realizations of an N -th order IIR transfer function should be evident

Cascade Form IIR Digital Filter Structures

- By expressing the numerator and the denominator polynomials of the transfer function as a product of polynomials of lower degree, a digital filter can be realized as a cascade of low-order filter sections
- Consider, for example, $H(z)=P(z) / D(z)$ expressed as

$$
H(z)=\frac{P(z)}{D(z)}=\frac{P_{1}(z) P_{2}(z) P_{3}(z)}{D_{1}(z) D_{2}(z) D_{3}(z)}
$$

Cascade Form IIR Digital Filter Structures

- Examples of cascade realizations obtained by different pole-zero pairings are shown below

Cascade Form IIR Digital Filter Structures

- Examples of cascade realizations obtained by different ordering of sections are shown below

Cascade Form IIR Digital Filter Structures

- There are altogether a total of 36 different cascade realizations of

$$
H(z)=\frac{P_{1}(z) P_{2}(z) P_{2}(z)}{D_{1}(z) D_{2}(z) D_{3}(z)}
$$ based on pole-zero-pairings and ordering

- Due to finite wordlength effects, each such cascade realization behaves differently from others

Cascade Form IIR Digital Filter Structures

- Usually, the polynomials are factored into a product of 1st-order and 2nd-order polynomials:

$$
H(z)=p_{0} \prod_{k}\left(\frac{1+\beta_{1 k} z^{-1}+\beta_{2 k} z^{-2}}{1+\alpha_{1 k} z^{-1}+\alpha_{2 k} z^{-2}}\right)
$$

- In the above, for a first-order factor

$$
\alpha_{2 k}=\beta_{2 k}=0
$$

Cascade Form IIR Digital Filter Structures

- Consider the 3rd-order transfer function

$$
H(z)=p_{0}\left(\frac{1+\beta_{11} z^{-1}}{1+\alpha_{11} z^{-1}}\right)\left(\frac{1+\beta_{12} z^{-1}+\beta_{22} z^{-2}}{1+\alpha_{12} z^{-1}+\alpha_{22} z^{-2}}\right)
$$

- One possible realization is shown below

Copyright © 2001, S. K. Mitra

Cascade Form IIR Digital Filter Structures

- Example - Direct form II and cascade form realizations of

$$
\begin{aligned}
H(z) & =\frac{0.44 z^{-1}+0.362 z^{-2}+0.02 z^{-3}}{1+0.4 z^{-1}+0.18 z^{-2}-0.2 z^{-3}} \\
& =\left(\frac{0.44+0.362 z^{-1}+0.02 z^{-2}}{1+0.8 z^{-1}+0.5 z^{-2}}\right)\left(\frac{z^{-1}}{1-0.4 z^{-1}}\right)
\end{aligned}
$$

are shown on the next slide

Cascade Form IIR Digital Filter Structures

Direct form II

Cascade form

Parallel Form IIIR Digital Filter Structures

- A partial-fraction expansion of the transfer function in z^{-1} leads to the parallel form I structure
- Assuming simple poles, the transfer function $H(z)$ can be expressed as

$$
H(z)=\gamma_{0}+\sum_{k}\left(\frac{\gamma_{0 k}+\gamma_{1 k} z^{-1}}{1+\alpha_{1 k} z^{-1}+\alpha_{2 k} z^{-2}}\right)
$$

- In the above for a real pole $\alpha_{2 k}=\gamma_{1 k}=0$

Parallel Form IIR Digital Filter Structures

- A direct partial-fraction expansion of the transfer function in z leads to the parallel form II structure
- Assuming simple poles, the transfer function $H(z)$ can be expressed as

$$
H(z)=\delta_{0}+\sum_{k}\left(\frac{\delta_{0 k} z^{-1}+\delta_{2 k} z^{-2}}{1+\alpha_{1 k} z^{-1}+\alpha_{2 k} z^{-2}}\right)
$$

- In the above for a real pole $\alpha_{2 k}=\delta_{2 k}=0$

Parallel Form IIR Digital Filter Structures

- The two basic parallel realizations of a 3rdorder IIR transfer function are shown below

Parallel form I

Parallel form II

Parallel Form IIR Digital Filter Structures

- Example - A partial-fraction expansion of

$$
H(z)=\frac{0.44 z^{-1}+0.362 z^{-2}+0.02 z^{-3}}{1+0.4 z^{-1}+0.18 z^{-2}-0.2 z^{-3}}
$$

in z^{-1} yields

$$
H(z)=-0.1+\frac{0.6}{1-0.4 z^{-1}}+\frac{-0.5-0.2 z^{-1}}{1+0.8 z^{-1}+0.5 z^{-2}}
$$

Parallel Form IIR Digital Filter Structures

- The corresponding parallel form I realization is shown below

Parallel Form IIIR Digital Filter Structures

- Likewise, a partial-fraction expansion of $H(z)$ in z yields
$H(z)=\frac{0.24 z^{-1}}{1-0.4 z^{-1}}+\frac{0.2 z^{-1}+0.25 z^{-1}}{1+0.8 z^{-1}+0.5 z^{-2}}$
- The corresponding parallel form II realization is shown on the right

Realization Using MATLAB

- The cascade form requires the factorization of the transfer function which can be developed using the M-file zp2sos
- The statement sos $=z p 2 s o s(z, p, k)$ generates a matrix sos containing the coefficients of each 2nd-order section of the equivalent transfer function $H(z)$ determined from its pole-zero form

Realization Using MATLAB

- sos is an $L \times 6$ matrix of the form

whose i-th row contains the coefficients $\left\{p_{i \ell}\right\}$ and $\left\{d_{i \ell}\right\}$, of the the numerator and denominator polynomials of the i-th 2 ndorder section

Realization Using MATLAB

- L denotes the number of sections
- The form of the overall transfer function is given by

$$
H(z)=\prod_{i=1}^{L} H_{i}(z)=\prod_{i=1}^{L} \frac{p_{0 i}+p_{1 i} z^{-1}+p_{2 i} z^{-2}}{d_{0 i}+d_{1 i} z^{-1}+d_{2 i} z^{-2}}
$$

- Program 6_1 can be used to factorize an FIR and an IIR transfer function

Realization Using MATLAB

- Note: An FIR transfer function can be treated as an IIR transfer function with a constant numerator of unity and a denominator which is the polynomial describing the FIR transfer function

Realization Using MATLAB

- Parallel forms I and II can be developed using the functions residuez and residue, respectively
- Program 6_2 uses these two functions

Realization of Allpass Filters

- An M-th order real-coefficient allpass transfer function $A_{M}(z)$ is characterized by M unique coefficients as here the numerator is the mirror-image polynomial of the denominator
- A direct form realization of $A_{M}(z)$ requires $2 M$ multipliers
- Objective - Develop realizations of $A_{M}(z)$ requiring only M multipliers

Realization Using Multiplier Extraction Approach

- Now, an arbitrary allpass transfer function can be expressed as a product of 2 nd-order and/or 1st-order allpass transfer functions
- We consider first the minimum multiplier realization of a 1 st-order and a 2 nd-order allpass transfer functions

First-Order Allpass Structures

- Consider first the 1st-order allpass transfer function given by

$$
A_{1}(z)=\frac{d_{1}+z^{-1}}{1+d_{1} z^{-1}}
$$

- We shall realize the above transfer function in the form a structure containing a single multiplier d_{1} as shown below

First-Order Allpass Structures

- We express the transfer function $A_{1}(z)=Y_{1} / X_{1}$ in terms of the transfer parameters of the two-pair as

$$
A_{1}(z)=t_{11}+\frac{t_{12} t_{21} d_{1}}{1-d_{1} t_{22}}=\frac{t_{11}-d_{1}\left(t_{11} t_{22}-t_{12} t_{21}\right)}{1-d_{1} t_{22}}
$$

- A comparison of the above with

$$
A_{1}(z)=\frac{d_{1}+z^{-1}}{1+d_{1} z^{-1}}
$$

yields

$$
t_{11}=z^{-1}, t_{22}=-z^{-1}, t_{11} t_{22}-t_{12} t_{21}=-1
$$

First-Order Allpass Structures

- Substituting $t_{11}=z^{-1}$ and $t_{22}=-z^{-1}$ in $t_{11} t_{22}-t_{12} t_{21}=-1$ we get

$$
t_{12} t_{21}=1-z^{-2}
$$

- There are 4 possible solutions to the above equation:
Type 1A: $t_{11}=z^{-1}, t_{22}=-z^{-1}, t_{12}=1-z^{-2}, t_{21}=1$ Type 1B:

$$
t_{11}=z^{-1}, t_{22}=-z^{-1}, t_{12}=1+z^{-1}, t_{21}=1-z^{-1}
$$

First-Order Allpass Structures

- Type $1 \mathrm{~A}_{t}: t_{11}=z^{-1}, t_{22}=-z^{-1}, t_{12}=1, t_{21}=1-z^{-2}$
- Type $1 \mathrm{~B}_{t}$:

$$
t_{11}=z^{-1}, t_{22}=-z^{-1}, t_{12}=1-z^{-1}, t_{21}=1+z^{-1}
$$

- We now develop the two-pair structure for the Type 1A allpass transfer function

First-Order Allpass Structures

- From the transfer parameters of this allpass we arrive at the input-output relations:

$$
\begin{aligned}
Y_{2} & =X_{1}-z^{-1} X_{2} \\
Y_{1} & =z^{-1} X_{1}+\left(1-z^{-2}\right) X_{2}=z^{-1} Y_{2}+X_{2}
\end{aligned}
$$

- A realization of the above two-pair is sketched below

First-Order Allpass Structures

- By constraining the X_{2}, Y_{2} terminal-pair with the multiplier d_{1}, we arrive at the Type 1A allpass filter structure shown below

Type 1A

First-Order Allpass Structures

- In a similar fashion, the other three singlemultiplier first-order allpass filter structures can be developed as shown below

Type 1B

Type $1 \mathrm{~A}_{\mathrm{t}}$

Second-Order Allpass Structures

- A 2nd-order allpass transfer function is characterized by 2 unique coefficients
- Hence, it can be realized using only 2 multipliers
- Type 2 allpass transfer function:

$$
A_{2}(z)=\frac{d_{1} d_{2}+d_{1} z^{-1}+z^{-2}}{1+d_{1} z^{-1}+d_{1} d_{2} z^{-2}}
$$

Type 2 Allpass Structures

Type 3 Allpass Structures

- Type 3 allpass transfer function:

$$
A_{3}(z)=\frac{d_{2}+d_{1} z^{-1}+z^{-2}}{1+d_{1} z^{-1}+d_{2} z^{-2}}
$$

Type 3 Allpass Structures

Realization Using Multijplier Extraction Approach

- Example - Realize

$$
\begin{aligned}
A_{3}(z)= & \frac{-0.2+0.18 z^{-1}+0.4 z^{-2}+z^{-3}}{1+0.4 z^{-1}+} 0.18 z^{-2}-0.2 z^{-3}
\end{aligned} \quad \begin{aligned}
& \left(-0.4+z^{-1}\right)\left(0.5+0.8 z^{-1}+z^{-2}\right) \\
& \left(1-0.4 z^{-1}\right)\left(1+0.8 z^{-1}+0.5 z^{-2}\right)
\end{aligned}
$$

- A 3-multiplier cascade realization of the above allpass transfer function is shown below

Realization Using Two-Pair Extraction Approach

- The stability test algorithm described earlier in the course also leads to an elegant realization of an M th-order allpass transfer function
- The algorithm is based on the development of a series of ($m-1$)th-order allpass transfer functions $A_{m-1}(z)$ from an m th-order allpass transfer function $A_{m}(z)$ for $m=M, M-1, \ldots, 1$

Realization Using Two-Pair Extraction Approach

- Let

$$
\begin{aligned}
& \text { Let } \\
& A_{m}(z)=\frac{d_{m}+d_{m-1} z^{-1}+d_{m-2} z^{-2}+\cdots+d_{1} z^{-(m-1)}+z^{-m}}{1+d_{1} z^{-1}+d_{2} z^{-2}+\cdots+d_{m-1} z^{(m-1)}+d_{m} z^{-m}}
\end{aligned}
$$

- We use the recursion

$$
A_{m-1}(z)=z\left[\frac{A_{m}(z)-k_{m}}{1-k_{m} A_{m}(z)}\right], \quad m=M, M-1, \ldots, 1
$$

where $k_{m}=A_{m}(\infty)=d_{m}$

- It has been shown earlier that $A_{M}(z)$ is stable if and only if

$$
k_{m}^{2}<1 \text { for } m=M, M-1, \ldots, 1
$$

Realization Using Two-Pair Extraction Approach

- If the allpass transfer function $A_{m-1}(z)$ is expressed in the form

$$
A_{m-1}(z)=\frac{d_{m-1}^{\prime}+d_{m-2}^{\prime} z^{-1}+\cdots+d_{1}^{\prime} z^{-(m-2)}+z^{-(m-1)}}{1+d_{1}^{\prime} z^{-1}+\cdots+d_{m-2}^{\prime} z^{-(m-2)}+d_{m-1}^{\prime} z^{-(m-1)}}
$$

then the coefficients of $A_{m-1}(z)$ are simply related to the coefficients of $A_{m}(z)$ through

$$
d_{i}^{\prime}=\frac{d_{i}-d_{m} d_{m-i}}{1-d_{m}^{2}}, 1 \leq i \leq m-1
$$

Realization Using Two-Pair Extraction Approach

- To develop the realization method we express $A_{m}(z)$ in terms of $A_{m-1}(z)$:

$$
A_{m}(z)=\frac{k_{m}+z^{-1} A_{m-1}(z)}{1+k_{m} z^{-1} A_{m-1}(z)}
$$

- We realize $A_{m}(z)$ in the form shown below

Realization Using Two-Pair Extraction Approach

- The transfer function $A_{m}(z)=Y_{1} / X_{1}$ of the constrained two-pair can be expressed as

$$
A_{m}(z)=\frac{t_{11}-\left(t_{11} t_{22}-t_{12} t_{21}\right) A_{m-1}(z)}{1-t_{22} A_{m-1}(z)}
$$

- Comparing the above with

$$
A_{m}(z)=\frac{k_{m}+z^{-1} A_{m-1}(z)}{1+k_{m} z^{-1} A_{m-1}(z)}
$$

we arrive at the two-pair transfer parameters

Realization Using Two-Pair Extraction Approach

$$
\begin{gathered}
t_{11}=k_{m}, \quad t_{22}=-k_{m} z^{-1} \\
t_{11} t_{22}-t_{12} t_{21}=-z^{-1}
\end{gathered}
$$

- Substituting $t_{11}=k_{m}$ and $t_{22}=-k_{m} z^{-1}$ in the equation above we get

$$
t_{12} t_{21}=\left(1-k_{m}^{2}\right) z^{-1}
$$

- There are a number of solutions for t_{12} and t_{21}

Realization Using Two-Pair Extraction Approach

- Some possible solutions are given below:

$$
\begin{aligned}
& t_{11}=k_{m}, t_{22}=-k_{m} z^{-1}, t_{12}=z^{-1}, t_{21}=1-k_{m}^{2} \\
& t_{11}=k_{m}, t_{22}=-k_{m} z^{-1}, t_{12}=\left(1-k_{m}\right) z^{-1}, t_{21}=1+k_{m} \\
& t_{11}=k_{m}, t_{22}=-k_{m} z^{-1}, t_{12}=\sqrt{1-k_{m}^{2} z^{-1}, t_{21}=\sqrt{1-k_{m}^{2}}} \\
& t_{11}=k_{m}, t_{22}=-k_{m} z^{-1}, t_{12}=\left(1-k_{m}^{2}\right) z^{-1}, t_{21}=1
\end{aligned}
$$

Realization Using Two-Pair Extraction Approach

- Consider the solution
$t_{11}=k_{m}, t_{22}=-k_{m} z^{-1}, t_{12}=\left(1-k_{m}^{2}\right) z^{-1}, t_{21}=1$
- Corresponding input-output relations are

$$
\begin{aligned}
& Y_{1}=k_{m} X_{1}-\left(1-k_{m}^{2}\right) z^{-1} X_{2} \\
& Y_{2}=X_{1}-k_{m} z^{-1} X_{2}
\end{aligned}
$$

- A direct realization of the above equations leads to the 3-multiplier two-pair shown on the next slide

Realization Using Two-Pair Extraction Approach

- The transfer parameters
$t_{11}=k_{m}, t_{22}=-k_{m} z^{-1}, t_{12}=\left(1-k_{m}\right) z^{-1}, t_{21}=1+k_{m}$ lead to the 4-multiplier two-pair structure shown below

Realization Using Two-Pair Extraction Approach

- Likewise, the transfer parameters
$t_{11}=k_{m}, t_{22}=-k_{m} z^{-1}, t_{12}=\sqrt{1-k_{m}^{2}} z^{-1}, t_{21}=\sqrt{1-k_{m}^{2}}$ lead to the 4-multiplier two-pair structure shown below

Realization Using Two-Pair Extraction Approach

- A 2-multiplier realization can be derived by manipulating the input-output relations:

$$
\begin{aligned}
& Y_{1}=k_{m} X_{1}-\left(1-k_{m}^{2}\right) z^{-1} X_{2} \\
& Y_{2}=X_{1}-k_{m} z^{-1} X_{2}
\end{aligned}
$$

- Making use of the second equation, we can rewrite the first equation as

$$
Y_{1}=k_{m} Y_{2}+z^{-1} X_{2}
$$

Realization Using Two-Pair Extraction Approach

- A direct realization of

$$
\begin{aligned}
& Y_{1}=k_{m} Y_{2}+z^{-1} X_{2} \\
& Y_{2}=X_{1}-k_{m} z^{-1} X_{2}
\end{aligned}
$$

lead to the 2-multiplier two-pair structure, known as the lattice structure, shown below

Realization Using Two-Pair Extraction Approach

- Consider the two-pair described by

$$
t_{11}=k_{m}, t_{22}=-k_{m} z^{-1}, t_{12}=\left(1-k_{m}\right) z^{-1}, t_{21}=1+k_{m}
$$

- Its input-output relations are given by

$$
\begin{aligned}
& Y_{1}=k_{m} X_{1}+\left(1-k_{m}\right) z^{-1} X_{2} \\
& Y_{2}=\left(1+k_{m}\right) X_{1}-k_{m} z^{-1} X_{2}
\end{aligned}
$$

- Define

$$
V_{1}=k_{m}\left(X_{1}-z^{-1}\right) X_{2}
$$

Realization Using Two-Pair Extraction Approach

- We can then rewrite the input-output relations as $Y_{1}=V_{1}+z^{-1} X_{2}$ and $Y_{2}=X_{1}+V_{1}$
- The corresponding 1-multiplier realization is shown below

Realization Using Two-Pair Extraction Approach

- An m th-order allpass transfer function $A_{m}(z)$ is then realized by constraining any one of the two-pairs developed earlier by the $(m-1)$ th-order allpass transfer function $A_{m-1}(z)$

Realization Using Two-Pair Extraction Approach

- The process is repeated until the constraining transfer function is $A_{0}(z)=1$
- The complete realization of $A_{M}(z)$ based on the extraction of the two-pair lattice is shown below

Realization Using Two-Pair Extraction Approach

- It follows from our earlier discussion that $A_{M}(z)$ is stable if the magnitudes of all multiplier coefficients in the realization are less than 1, i.e., $\left|k_{m}\right|<1$ for $m=M, M-1, \ldots, 1$
- The cascaded lattice allpass filter structure requires $2 M$ multipliers
- A realization with M multipliers is obtained if instead the single multiplier two-pair is used

Realization Using Two-Pair Extraction Approach

- Example - Realize

$$
\begin{aligned}
A_{3}(z) & =\frac{-0.2+0.18 z^{-1}+0.4 z^{-2}+z^{-3}}{1+0.4 z^{-1}+0.18 z^{-2}-0.2 z^{-3}} \\
& =\frac{d_{1}+d_{2} z^{-1}+d_{1} z^{-2}+z^{-3}}{1+d_{1} z^{-1}+d_{2} z^{-2}+d_{3} z^{-3}}
\end{aligned}
$$

Realization Using Two-Pair Extraction Approach

- We first realize $A_{3}(z)$ in the form of a lattice two-pair characterized by the multiplier coefficient $k_{3}=d_{3}=-0.2$ and constrained by a 2 nd-order allpass $A_{2}(z)$ as indicated below

Realization Using Two-Pair Extraction Approach

- The allpass transfer function $A_{2}(z)$ is of the form

$$
A_{2}(z)=\frac{d_{2}^{\prime}+d_{1}^{\prime} z^{-1}+z^{-2}}{1+d_{1} z^{-1}+d_{2}^{\prime} z^{-2}}
$$

- Its coefficients are given by

$$
\begin{aligned}
& d_{1}^{\prime}=\frac{d_{1}-d_{3} d_{2}}{1-d_{3}^{2}}=\frac{0.4-(-0.2)(0.18)}{1-(-0.2)^{2}}=0.4541667 \\
& d_{2}^{\prime}=\frac{d_{2}-d_{3} d_{1}}{1-d_{3}^{2}}=\frac{0.18-(-0.2)(0.4)}{1-(-0.2)^{2}}=0.2708333
\end{aligned}
$$

Realization Using Two-Pair Extraction Approach

- Next, the allpass $A_{2}(z)$ is realized as a lattice two-pair characterized by the multiplier coefficient $k_{2}=d_{2}^{\prime}=0.2708333$ and constrained by an allpass $A_{1}(z)$ as indicated below

Realization Using Two-Pair Extraction Approach

- The allpass transfer function $A_{1}(z)$ is of the form

$$
A_{1}(z)=\frac{d_{1}^{\prime \prime}+z^{-1}}{1+d_{1}^{\prime \prime} z^{-1}}
$$

- It coefficient is given by

$$
d_{1}^{\prime \prime}=\frac{d_{1}^{\prime}-d_{2}^{\prime} d_{1}^{\prime}}{1-\left(d_{2}^{\prime}\right)^{2}}=\frac{d_{1}^{\prime}}{1+d_{2}^{\prime}}=\frac{0.4541667}{1.2708333}=0.3573771
$$

Realization Using Two-Pair Extraction Approach

- Finally, the allpass $A_{1}(z)$ is realized as a lattice two-pair characterized by the multiplier coefficient $k_{1}=d_{1}^{\prime \prime}=0.3573771$ and constrained by an allpass $A_{0}(z)=1$ as indicated below

Copyright © 2001, S. K. Mitra

Cascaded Lattice Realization Using MATLAB

- The M-file poly2rc can be used to realize an allpass transfer function in the cascaded lattice form
- To this end Program 6_3 can be employed

