Multirate Digital Signal
Processing

Basic Sampling Rate Alteration Devices

e Up-sampler - Used to increase the sampling
rate by an integer factor

e Down-sampler - Used to increase the
sampling rate by an integer factor
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Up-Sampler

Time-Domain Characterization

e An up-sampler with an up-sampling factor
L, where L is a positive integer, develops an
output sequence x,[n] with a sampling rate
that is L times larger than that of the input
seguence X[ n]

 Block-diagram representation

Xl ——1L — x,[n]

Copyright © 2001, S. K. Mitra



Up-Sampler

o Up-sampling operation is implemented by
Inserting L —1equidistant zero-valued
sampl es between two consecutive samples
of X[n]

* |nput-output relation

~ [Xn/L], n=0,+L,x2L,---
XU[n]_{ 0, otherwise
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Up-Sampler

* Figure below shows the up-sampling by a
factor of 3 of a sinusoidal sequence with a
frequency of 0.12 Hz obtained using

Input Sequence

Amplitude

Program 10 1
Output sequence up-sampled by 3

| if | 1 | jT i L gOSJ@@L@T@@Q@@J@f@@f

OO 0]

lj TT

Amplitud
o

=) L 1 1 | O
S 0 10 20 30 40 50
Timeindex n e
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Up-Sampler

* |n practice, the zero-valued samples
Inserted by the up-sampler are replaced with
appropriate nonzero values using some type
of filtering process

* Processiscalled interpolation and will be
discussed |ater
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Down-Sampler

Time-Domain Characterization

* An down-sampler with adown-sampling
factor M, where M Is a positive integer,
devel ops an output sequence y[n] with a
sampling rate that is (1/M)-th of that of the
INnput sequence X[ N]

 Block-diagram representation

xn] —| M —— yln]
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Down-Sampler

* Down-sampling operation is implemented
by keeping every M-th sample of x|[n] and
removing M —1 in-between samplesto
generate y[n|

* |nput-output relation

yln] =Xx[nM]
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Amplitude

Down-Sampler

e Figure below shows the down-sampling by

afactor of 3 of asinusoidal sequence of
frequency 0.042 Hz obtained using Program

10 2

Input Sequence Output sequence down-sampled by 3
1 T J T T

N j j ?OT TT T

Oﬁ? Tﬂ b1 T oy T
INRRK

@,
673
NeRe
© o—F%—
mplitud

O%L if)
| I 1l _ | | I D
10 30 40 S0 0 10 20 30 40 50

ime index n Timeindex n
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Basic Sampling Rate
Alteration Devices

Sampling periods have not been explicitly
shown In the block-diagram representations
of the up-sampler and the down-sampler

Thisisfor simplicity and the fact that the
mathematical theory of multirate systems
can be understood without bringing the
sampling period T or the sampling
frequency R Into the picture
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Down-Sampler

* Figure below shows explicitly the time-
dimensions for the down-sampl er

X[(n] = X, (NT) ——| M —— y[n] = X, (NMT)

|nput sampling frequency Output sampling frequency
1 K1
F = — F — —
T M T

10 .
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Up-Sampler

* Figure below shows explicitly the time-
dimensions for the up-sampler

X[n] =X, (NT)—

L

— y[n]

|nput sampling frequency

11

_ [ Xy(nT/L), n=0,tL,x2L,...
- 0 otherwise

Output sampling frequency
- 1

F =LK =_,
T T T
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Basic Sampling Rate
Alteration Devices

e The up-sampler and the down-sampler are
linear but time-varying discrete-time
systems

 Welllustrate the time-varying property of a
down-sampler

* Thetime-varying property of an up-sampler
can be proved in asimilar manner

12 _ _
Copyright © 2001, S. K. Mitra



Basic Sampling Rate
Alteration Devices

e Consider afactor-of-M down-sampler
defined by y[n] =X[nM]

e |tsoutput Y4[Nn] for aninput X[N] =X nN-ng]
IS then given by

yaln] = [ Mn] = X Mn—ng]

e From the input-output relation of the down-
sampler we obtain

yin—ng] = XM (n-ng)]
=X Mn—-Mng] # yq[n]

13
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Up-Sampler

Frequency-Domain Char acterization

e Consider first afactor-of-2 up-sampler
whose input-output relation in the time-
domain isgiven by

X [1] = {x[n/2], n=0,%= 2,1_:4,...

. 0, otherwise

14 _ _
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Up-Sampler

* |nterms of the z-transform, the input-output
relation is then given by

Xy(2)= Txnz"= Yxn/2z"

N=—00 N=—00
N even

= ix[zm] 7 " = X(2%)

M=—o0
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Up-Sampler

 |nterms of the z-transform, the input-output
relation is then given by

Xy(2)= Txnz"= Yxn/2gz"

N=—00 N=—00
N even

= ix[zm] 7 " = X(Z%)

M=—o0

Copyright © 2001, S. K. Mitra
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Up-Sampler

e |Inasimilar manner, we can show that for a
factor-of-L up-sampler

Xy(2)=X(z")
 On the unit circle, for z=¢e!?, the input-
output relation is given by

Xu(e1?) = X (1)

Copyright © 2001, S. K. Mitra



Up-Sampler

* Figure below shows the relation between
X (e!?yand X, (e'?) for L = 2inthe case of
atypica sequence X[ N]

N\ /\f\f
/\/\/\/\/\/\

Copyright © 2001, S. K. Mitra
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Up-Sampler

» Ascan be seen, afactor-of-2 sampling rate
expansion leads to a compression of X (e!“)
by afactor of 2 and a 2-fold repetition in the
baseband [0, 2x]

e Thisprocessis called imaging aswe get an
additional “image’ of the input spectrum

Copyright © 2001, S. K. Mitra
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Up-Sampler

o Similarly in the case of afactor-of-L
sampling rate expansion, there will be L -1
additional images of the input spectrum in
the baseband

* Lowpassfiltering of x,[n] removesthe L -1
Images and in effect “fillsin” the zero-
valued samplesin x,[n] with interpolated
sample values

Copyright © 2001, S. K. Mitra
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Up-Sampler

 Program 10 3 can be used to illustrate the
frequency-domain properties of the up-
sampler shown below for L =4

Input spectrum

Magnitude

o
IN

o
o)

o
o

Output spectrum

olt
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Down-Sampler

Frequency-Domain Char acterization

« Applying the z-transform to the input-output
relation of afactor-of-M down-sampler

yln] =x{Mn]
we get 00

* The expression on the right-hand side

cannot be directly expressed in terms of
X(2)

22 _ _
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Down-Sampler

e To get around this problem, define anew
sequence Xy [n]:
nl, n=0,£M,x2M,...
Xint[n]:{x[ ]

0, otherwise
e Then
Y@= SHMz" = ¥ xpMnz"
n——OO N=—o0

lent[k] z KM — mt(zlllvI

23 k=—o0
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Down-Sampler

* Now, X[n] can beformally related to X[ n]
through

XintLN] = c[n]- X[ n]

Wherec[n]_ 1, n=0+M,+2M,...
10, otherwise
* A convenient representation of c[n] isgiven

where Wy, =

24 _ _
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Down-Sampler

o Taking the z-transform of X;+[N] =c[n]- X N]
and making use of

we arrive at

00 n 1 © M -1 "

Xint(2)= 2_c[n]x{n]z =M 2 (ZWM”jx[n]z_”
N=—00 N=—o0 \_k=0

_iM_ .- kn_—n _iM_l —k

M k_in_z_:;[n]WM ‘ j_ M EOX(ZWM ]

Copyright © 2001, S. K. Mitra
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Down-Sampler

e Consider afactor-of-2 down-sampler with
an input x[n] whose spectrum is as shown
below

f\/\f\f

 The DTFTsof the output and the input

seguences of this down-sampler are then
related as

V(@)= {X(1°12)+ X (-e)*/?)

Copyright © 2001, S. K. Mitra
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Down-Sampler

e Now X(—el®/2) =X (el(®=2m)/2) implying
that the second term X (—e!®/2) in the
previous equation is simply obtained by
shifting the first term X (e!®/2) to the right
by an amount 2r as shown below

X(-el®?)
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Down-Sampler

e The plots of the two terms have an overlap,
and hence, in general, the original “shape”
of X (el®) islost when x[n] is down-
sampled as indicated below

2Y (/)

27 _T 0 T oI

@

28 _ _
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Down-Sampler

 Thisoverlap causesthe aliasing that takes
place due to under-sampling

 Thereisno overlap, i.e.,, no aliasing, only if
X(€l®)=0 for|m>n/2
 Note: Y(e!®?)isindeed periodic with a
period 2, even though the stretched version
of X (el®) isperiodic with aperiod 4x

29 _ _
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Down-Sampler

* For the genera case, the relation between
the DTFTs of the output and the input of a
factor-of-M down- sampler IS given by

Y(ejoo) _ - Z X(ej(m 21K) /I M )
M ko
« mm) Y(el®)isasum of M uniformly
shifted and stretched versions of X (el®)
and scaled by afactor of 1/M
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Down-Sampler
e Aliasing isabsent if and only If
X (el®)=0 for lo/>n/M

as shown below

forM =2

X (el®) = O for jw>m/2

AN /

\/\/

—n -2 0 i

Xiel® <)
.
4 ",
o
",
S
o
"y
.H"\.
i b
i
I

\ T
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Down-Sampler

* Program 10 4 can be used to illustrate the
frequency-domain properties of the up-
sampler shown below for M = 2

Input spectrum Output spectrum
1 ‘ ‘ 0.5 ‘ ‘
0.8
(<} (<}
5 0.6 5
= =
8 0.4 g
p= p=

olt

32 _ _
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Down-Sampler

e The Input and output spectra of a down-
sampler with M = 3 obtained using Program
10-4 are shown below

Input spectrum Output spectrum
1 ‘ ‘ 0.5 ‘ ‘
0.8
()] (]
5 0.6 5
g 0.4 g
0.2

ol olt

o Effect of aliasing can be clearly seen

33 _ _
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Cascade Equivalences

o A complex multirate system isformed by an
Interconnection of the up-sampler, the
down-sampler, and the components of an
LTI digital filter

 In many applications these devices appear
IN a cascade form

* An interchange of the positions of the
branches in a cascade often can lead to a
computationally efficient realization

34 _ _
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Cascade Equivalences

 To implement afractional change in the
sampling rate we need to employ a cascade
of an up-sampler and a down-sampler

e Consider the two cascade connections
shown below

x[n] —} M —* L — Y,[n]

X[N]—1 L >y M — Y,[N]

35 _ _
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Cascade Equivalences

» A cascade of afactor-of-M down-sampler
and a factor-of-L up-sampler is
Interchangeable with no change in the
Input-output relation:

yaln] = y,[n]
If and only If M and L are relatively prime,

l.e., M and L do not have any common
factor that Isan integer k> 1
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Cascade Equivalences

e Two other cascade equivalences are shown
below

Cascade equivalence #1

X[n] —

+ M

—>

H (2)

Cascade equivalence #2

X[ n] —*

tL

—>

H(z"Y

— y,[N]

X[ n] —

H (M)

—Y,[N]

37

i M — y]_[n]

X[ n] —

H(2)

T L — yz[n]
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Filters in Sampling Rate

Alteration Systems

e From the sampling theorem it is known that
athe sampling rate of acritically sampled
discrete-time signal with a spectrum
occupying the full Nyquist range cannot be
reduced any further since such a reduction
will introduce aliasing

* Hence, the bandwidth of acritically
sampled signal must be reduced by lowpass
filtering before its sampling rate is reduced
by a down-sampler

Copyright © 2001, S. K. Mitra



Filters in Sampling Rate
Alteration Systems

o Likewise, the zero-valued samples
Introduced by an up-sampler must be
Interpolated to more appropriate values for
an effective sampling rate increase

e \We shall show next that this interpolation
can be achieved simply by digital lowpass
filtering

* \We now develop the frequency response
specifications of these lowpass filters

Copyright © 2001, S. K. Mitra
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Filter Specifications

e Since up-sampling causes periodic
repetition of the basic spectrum, the
unwanted Images in the spectra of the up-
sampled signal x,[n] must be removed by

owpass filter H(2), called the

ation filter, asindicated below

using a
Interpo
x[n] — 1 L M

H(2)

s y[N]

* The above system is called an inter polator

Copyright © 2001, S. K. Mitra
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Filter Specifications

e On the other hand, prior to down-sampling,
the signal v[n] should be bandlimited to
| < 7z/M by means of alowpass filter,
called the decimation filter, as indicated
below to avoid aliasing caused by down-

sampling

X[ n] —

H(2)

——»

+ M

L, y[n]

* The above system is called adecimator

Copyright © 2001, S. K. Mitra



Interpolation Filter
Specifications

o Assume X|n] has been obtained by sampling a
continuous-time signal X, (t) at the Nyquist
raie

. If X,(jQ) and X(e'?)denote the Fourier
transforms of X, (t) and x[n], respectively,
then it can be shown

i 1 2 o — | 27K
X(Ee!?)== > X
( ) TOk:Z—oo a( TO j
. * Where Ty Is the sampling period
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Interpolation Filter
Specifications

« Since the sampling Is being performed at the
Nyquist rate, there is no overlap between the
shifted spectrasof X(jaw/T,)

o |f weinstead sample X, (t)at a much higher
rate T =L T, yielding y[n], its Fourier
transform Y (e!?)isrelated to X, (j2)
through
joy_1 5 (J’w—jZﬂkj:L 2 (jo-j2rk

Y(e ) Tkzz—oo Xa T TO kzZ—oo Xa( TO/L

Copyright © 2001, S. K. Mitra
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Interpolation Filter

Specifications

e On the other hand, If we pass x|n] through a
factor-of-L up-sampler generating x,[n] , the
relation between the Fourier transforms of
x[n] and X, [n] are given by

Xy (') = X (')

o |t thereforefollowsthat if X,[n] is passed

through an ideal lowpass filter H(z) with a

cutoff at m/L and again of L, the output of
the filter will be precisaly y[n]

44 _ _
Copyright © 2001, S. K. Mitra



45

Interpolation Filter
Specifications

 |n practice, atransition band is provided to
ensure the realizability and stability of the
lowpass interpolation filter H(2)

* Hence, the desired lowpass filter should
have a stopband edge at o =7 /L and a
passband edge @, close to wg to reduce the
distortion of the spectrum of x[n]

Copyright © 2001, S. K. Mitra



Interpolation Filter
Specifications

* If wIsthe highest frequency that needsto
be preserved in X[ n], then
Wp =0l L
o Summarizing the specifications of the
lowpass interpolation filter are thus given

D
g L o</l

H (eja)) :iO, mlL<|lw <7

46 _ _
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Decimation Filter
Specifications

e Inasimilar mann
specifications for

er, we can develop the
the lowpass decimation

filter that are given by

H(ejw):<

1 @< /M

47

0, 7/M<w<x
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Filter Design Methods

* The design of thefilter H(Z) Is a standard
IR or FIR lowpass filter design problem

« Any one of the techniques outlined In
Chapter 7 can be applied for the design of
these lowpass filters

48 _ _
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Filters for Fractional Sampling
Rate Alteration

A fractional change in the sampling rate can
be achieved by cascading a factor-of-M
decimator with afactor-of-L interpolator,
where M and L are positive integers

e Such acascade is equivalent to a decimator
with a decimation factor of M/L or an

Interpolator with an interpolation factor of
L/M
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Filters for Fractional Sampling

Rate Alteration

e There are two possible such cascade
connections as indicated below

—» Hd(Z)—>L M —»T | HU(Z)—>

—>T | HU(Z)—> Hd(Z)—Pi M —

* The second scheme is more computationally
efficient since only one of thefilters, H,(2)
or Hq4(2), isadequate to serve as both the
Interpolation and the decimation filter

Copyright © 2001, S. K. Mitra
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Filters for Fractional Sampling
Rate Alteration

* Hence, the desired configuration for the
fractional sampling rate alteration is as
Indicated below where the lowpass filter
H(2) has a stopband edge frequency given

by
/A
mln——
(L I\/I)

Copyright © 2001, S. K. Mitra
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Computational Requirements

* Thelowpass decimation or interpolation
filter can be designed either asan FIR or an
IR digital filter

 Inthe case of single-rate digital signal
orocessing, IR digital filters are, in generdl,
computationally more efficient than
equivalent FIR digital filters, and are
therefore preferred where computational
cost needs to be minimized
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Computational Requirements

e Thisissue s not gquite the same in the case
of multirate digital signal processing

o Toillustrate this point further, consider the

factor-of-M decimator shown below

x[n] — H(2) M¢ M — YIn]

o |If the decimation filter H(Z) isan FIR filter

of length N implemented in adirect form,
then

N-1
vin]= > h[m]x[n—m]
m=0

Copyright © 2001, S. K. Mitra
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Computational Requirements

* Now, the down-sampler keeps only every
M-th sample of v[n] at its output

e Hence, It Issufficient to compute v[n] only
for values of n that are multiples of M and
skip the computations of in-between

samples
 Thisleadsto afactor of M savingsin the
computational complexity

A _ _
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Computational Requirements

 Now assume H(z) to be an | IR filter of order
K with a transfer function

V(D) _py (- PO
X(2) D(2)
where

K
P(2)= >, pnz_n
n=0

K
D(2)=1+ Y d,z "
n=1

Copyright © 2001, S. K. Mitra



Computational Requirements

o |tsdirect form implementation is given by
wWn] = ~cyw{n—1] - dpw{n—2] -
—dgWn—K]+Xxn]
vin] = ppWn]+ pmn—1f +---+ pywn—K]
e SinceV|[n] Isbeing down-sampled, it is
sufficient to compute v[n] only for values of
n that are integer multiples of M

56 _ _
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Computational Requirements

 However, the intermediate signal w[n] must
ne computed for all values of n

e For example, in the computation of

VIM]=poWM]+ pWM =1 +---+ py WM - K]
K+1 successive values of wn] are still
required

o Asaresult, the savings in the computation
In this case Is going to be less than a factor

of M

o7 _ _
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Computational Requirements

e Example - We compare the computational
complexity of various implementations of a
factor-of-M decimator

et the sampling frequency be Fy
* Then the number of multiplications per

second, to be denoted as’R,, are as follows
for various computational schemes

o8 _ _
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Computational Requirements

* FIRH(2) of length N :

Rm pir = NxFy
 FIR H(2) of length N followed by a down-
sampler:
Rwm FIr-pEC = NxFr /M
* [IRH(2) of order K:
Rvir=0CK+1)xFr
e [IR H(2) of order K followed by a down-

sampler :
59 RM,”R_DEC:KXI:-I-—I_(K—I_l)XI:]-g;ht@ZOOlSK Mitra



Computational Requirements

 Inthe FIR case, savingsin computations s
oy afactor of M

* InthellR case, savings in computations is

oy afactor of M(2K+1)/[(M+1)K+1], which
IS not significant for large K

e For M =10and K =9, the savingsisonly
by afactor of 1.9

 There are certain cases wherethe | IR filter
can be computationally more efficient

60 _ _
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Computational Requirements

* For the case of interpolator design, very
similar arguments hold

* If H(2) isan FIR interpolation filter, then
the computational savingsis by afactor of L
(sincev[n] has L —1 zeros between its
consecutive nonzero samples)

e On the other hand, computational savingsis
significantly lesswith | IR filters

61 _ _
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Sampling Rate Alteration
Using MATLAB

e Thefunctiondeci nat e can be employed
to reduce the sampling rate of an input
signal vector X by an integer factor Mto
generate the output signal vector y

e The decimation of a sequence by a factor of
M can be obtained using Program 10 5
which employs the function deci nmat e

Copyright © 2001, S. K. Mitra



Sampling Rate Alteration
Using MATLAB

 Example - The input and output plots of a
factor-of-2 decimator designed using the

Program 10 5 are shown below
Output sequence

Input sequence
5 | | | | 2
i g i
d q
1l | 2 |
2 oflll it JIE g ol dt
s S B” i
= S
< N *
%@3 -2 | ‘ ‘ 0
100 0 10 20 30 4 50
Timeindex n
Copyright © 2001, S. K. Mitra
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Sampling Rate Alteration
Using MATLAB

 Thefunctioni nt er p can be employed to

Increase the sampling rate of an input signal
X by an integer factor L generating the

output vector y

* The lowpassfilter designed by the M-fileis
asymmetric FIR filter

Copyright © 2001, S. K. Mitra



Sampling Rate Alteration
Using MATLAB

o Thefilter allowsthe original input samples
to appear asisin the output and finds the
missing samples by minimizing the mean-
sguare errors between these samples and
their ideal values

* Theinterpolation of asequence x by a
factor of L can be obtained using the

Program 10 6 which employs the function

= | nterp | |
Copyright © 2001, S. K. Mitra



Sampling Rate Alteration
Using MATLAB
 Example - The input and output plots of a
factor-of-2 interpolator designed using
Program 10 6 are shown below

e

Input sequence

2 TN ‘ ‘ ‘ 2 ‘
() ()
© ©
= TT@ m = 0
= (O» (e S = 7 %

: TMME :

< < 1

-1 ] -1 el
-2 : : : : -2 : : : :
0 10 20 30 40 50 0 20 40 60 80 100
Timeindex n Timeindex n
Copyright © 2001, S. K. Mitra
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Sampling Rate Alteration
Using MATLAB

e Thefunctionr esanpl e can be employed
to Increase the sampling rate of an input
vector X by aratio of two positive integers,
L/ M generating an output vector y

 The M-file employs alowpass FIR filter
designedusingfirl with aKaiser
window

e Thefractional interpolation of a sequence

can be obtained using Program 10 7 which
employsthe functionr esanpl e
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Sampling Rate Alteration
Using MATLAB

 Example - The input and output plots of a
factor-of-5/3 interpolator designed using
Program 10 7 are given below

b, .
r

Input sequence

?Tﬂ Wﬁ?@ Jﬁ@?

Amplitude
N P o - N

2
1

()
©
2
=

o 0

=

E %ﬂ@

-1
_2 L L - I I | I
0 10 20 30 0 10 20 30 40 50
Timeindex n Timeindex n
Copyright © 2001, S. K. Mitra
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Multistage Design of

Decimator and Interpolator

e Theinterpolator and the decimator can also
be designed in more than one stages

e For exampleif the interpolation factor L can
be expressed as a product of two integers, Ly
and L., then the factor-of-L interpolator can
be realized in two stages as shown below

X[n] —

=

>

H1(2)

>

Il

—»

H5 (2)

— y[n]

69
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Multistage Design of
Decimator and Interpolator

e LikewiseIf the decimator factor M can be
expressed as a product of two integers, M,
and M, , then the factor-of-M interpolator
can be realized in two stages as shown

below

X[n]—> Hl(Z) —>¢|\/|1—> H2(Z) —>¢M2—>y[n]

Copyright © 2001, S. K. Mitra



Multistage Design of

Decimator and Interpolator

o Of course, the design can involve more than
two stages, depending on the number of
factors used to express L and M, respectively

* In generd, the computational efficiency Is
Improved significantly by designing the
sampling rate alteration system as a cascade
of several stages

e \We consider the use of FIR filters here

71 _ _
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Multistage Design of
Decimator and Interpolator

 Example - Consider the design of a
decimator for reducing the sampling rate of
asignal from 12 kHz to 400 Hz

e The desired down-sampling factor Is
therefore M = 30 as shown below

—¥ H(z) —hl3[} —p

12 kHz 12 kHz 400 Hz

12 _ _
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Multistage Design of

Decimator and Interpolator

o Specifications for the decimation filter H(z)
are assumed to be as follows:

Fp =180Hz, Fg=200Hz,
§5,=0.002, &=0.001

| Hei®)|
A

\

§,=0.002, 3;=0001

E/ T30
180 Hz 200 Hz
F, F,

12 kHz
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Multistage Design of
Decimator and Interpolator

o Assume H(Z2) to be designed as an
equiripple linear-phase FIR filter

 Now Kaiser'sformulafor estimating the
order of H(z) to meet the specificationsis

given by —20log; M—B

N = 14.6Af
where Af = (Fs—F,)/ Fy Isthe normalized
transition bandwidth
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Multistage Design of
Decimator and Interpolator

* Program 7 4 determinesthe filter order
using Kaiser’s formula

e Using Program 7_4 we obtain N = 1808

e Therefore, the number of multiplications per
second in the single-stage Implementation
of the factor-of-30 decimator Is

Ry 11=1800x 222 _ 723600
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Multistage Design of
Decimator and Interpolator

e \We next implement H(z) using the IFIR
approach as a cascade in the form of
G(ZOF(z2) e~ F(2) 30—

12 kHz 12 kHz 12kHz 400 Hz

parent filter G(z) should
thus be as shown on the -
rl ght s Fy) (15F,) (Fy — 15F,) (Fp)

» The specifications of the —'\
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Multistage Design of

Decimator and Interpolator

* Thiscorresponds to stretching the
specifications of H(z) by 15

 Figure below shows the magnitude response
of G(Z1°) and the desired response of F(2)

el o)

} J } AF = (D
0 ,,.r" '\ n
180 Hz 200 H 600 Hz 12 kH
F, F, Fr -15F,
Va4 13
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Multistage Design of
Decimator and Interpolator

* Note: The desired response of F(z) has a
wider transition band as it takes into
account the spectral gaps between the
passbands of G(Z1°)

e Because of the cascade connection, the
overall ripple of the cascade in dB Is given
by the sum of the passband ripples of F(2)
and G(z1°) in dB

78 _ _
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Multistage Design of
Decimator and Interpolator

e This can be compensated for by designing
F(z) and G(2) to have a passbhand ripple of
0, =0.001 each

e On the other hand, the cascade of F(z) and
G(Z1°) has a stopband at least as good as
F(2) or G(Z5), individually

* S0 we can choose 64 = 0.001 for both filters

79 _ _
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Multistage Design of
Decimator and Interpolator

e Thus, specifications for the two filters G(z)
and F(z) are asfollows:

G(2): 300
(2) 8,=0.001, 8s=0.001, Af = 12000

. 420
F(z).8 =0.001, 3.,=0.001, Af = 12000

o Thefilter orders obtained using Program
/ 4dare. Order of G(z) =129

Order of F(z) = 92

80
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Multistage Design of
Decimator and Interpolator

* Thelength of H(2) for adirect implementation
1S 1809

* Thelength of cascade implementation
G(Z®)F(2) is 92+15x129+1= 2028

« —> Thelength of the cascade structure s
higher
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Multistage Design of
Decimator and Interpolator

e The computational complexity of the
decimator Implemented using the cascade
structure can be dramatically reduced by
making use of the cascade equivalence #1

e Tothisend, we first redraw the structure
— G(25)— F(2) —430—
In the form shown below
— F(2) " G(Z)—+30—
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Multistage Design of

Decimator and Interpolator

e Thelast structure is equivalent to the one
shown below

— F(2) —G(A5)—1415—{2 —

e The above can be redrawn as indicated
below by making use of the cascade
equivalence #1

— F(2) —+15(— G(2) 42 —
12 kHz 12kHz 800 Hz 800 Hz 400 Hz

Y Y
Factor-of-15 decimator Factor-of-2 decimator
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Multistage Design of

Decimator and Interpolator

* From the last realization we observe that the
Implementation of G(z) followed by a
factor-of-2 down-sampler requires

Rm 6=130x %X =52,000 mult/sec
* Likewise, the implementation of F(2)
followed by afactor-of-15 down-sampler
reguires

Ry, p=93x1420=74,400 mult/sec
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Multistage Design of
Decimator and Interpolator

he total complexity of the |FIR-based
Implementation of the factor-of-30
decimator is therefore

52,000 + 74,400 = 126,400 mult/sec
which is about 5.72 times smaller than that
of adirect implementation of the
decimation filter H(z)
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