Module 5: Directional Overcurrent Protection # Lecture 19: Directional Overcurrent Relay Coordination (Tutorial) ## **Objectives** In this lecture we will solve a tutorial on directional relay coordination and see that - In a mesh system both clockwise and anticlockwise loops have to be coordinated separately. - Directional relay coordination in a mesh system is iterative. - The relay setting converges after a couple of iterations. #### 19.1 Introduction Coordination of directional overcurrent relays involves setting of relays one by one so that at each stage the relay coordinates with its primary relay. But in a loop as shown in fig 19.1, the last relay to be set is the very first, in which initial setting were assumed. makes relay This the coordination activity in a mesh system iterative. This should be contrasted with a radial system where the relay coordination is completed in one pass. The iterative nature relay setting coordination converges when on revisiting the same relay, if we do not have to change the relay settings and TMS. As shown in fig 19.1, a typical transmission line is protected by directional relays at both ends. Hence we have to consider two loops, i.e. one loop formed in clockwise direction and the another in anticlockwise direction. In this case clockwise loop is given by $R_5 \to R_6 \to R_7 \to R_8 \to R_5$ and anti clockwise loop is given by $R_1 \to R_2 \to R_3 \to R_4 \to R_1$ where arrow ' \to ' should be read as 'backs up'. Now, let us consider the anticlockwise loop for setting. We can start setting from any one of the four relays, i.e. R_1 , R_2 , R_3 and R_4 . Let us start from R_2 , i.e. setting in relay R_2 is assumed appropriately. Typically this implies that some value of TMS within the limits is taken. Limit points should be avoided at initial stage. PSM can be calculated using the guidelines outlined in the previous lectures. R_1 will be set to coordinate with R_2 , since R_1 has to back up R_2 . Now R_4 has to coordinate with R_1 , R_3 with R_4 and R_2 with R_3 . Thus we can see that the setting of R_2 has changed from what it was initially to coordinate with R_3 . After first iteration, we update the setting of R_2 to the corresponding new setting, to coordinate with R_3 , thus closing the loop. If the setting of the R_2 has changed significantly, then we repeat the above process by fine tuning the settings of all the relays in the loop again. As every iteration improvises the relay settings (TMS), we expect the settings to converge in a few iterations. We have to repeat the same process with the clockwise loop also. Then all the relays will be set and relay coordination activity is complete. #### 19.2 Example The following example will illustrate this process in detail. In the fig 19.1, the remote bus fault currents seen by each primary and back up relay pairs are tabulated below (Table 1). | Table 1 : Fault Current seen by Primary - Back up Relay Pairs | | | | | | |---|-------------------------------|----------------------------------|-------------------------------|----------------------------------|--| | | Anti cloc | ckwise loop | Clockwise loop | | | | Remote Bus Fault
at | Current seen by primary relay | Current seen by
back up relay | Current seen by primary relay | Current seen by back
up relay | | | F ₁ | R ₂ (639A) | R ₁ (152A) | R ₆ (1365A) | R ₅ (272A) | | | F ₂ | R ₁ (1652A) | R ₄ (391A) | R ₇ (868A) | R ₆ (240A) | | | F ₃ | R ₄ (1097A) | R ₃ (140A) | R ₈ (1764A) | R ₇ (287A) | | | F ₄ | R ₃ (937A) | R ₂ (142A) | R ₅ (553A) | R ₈ (197A) | | For the relays in table 1, if the pick up values are as tabulated in table 2, find out the TMS. | Table 2 : Pick up Values of Relays | | | | | | | | | |------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | Relay | R ₁ | R ₂ | R ₃ | R ₄ | R ₅ | R ₆ | R ₇ | R ₈ | | Pick up
setting (A) | 60 | 80 | 60 | 160 | 80 | 160 | 128 | 100 | ### 19.2 Example (contd..) Answer We can assume relay setting for any one of the four relays. Let us start setting from relay R2. Iteration 1 For relay R₂, assume a TMS of 0.05 (Normal range is 0.025 to 1.2). The reason to initialize TMS to 0.05 and not the minimum value i.e. 0.025 is that further iterations may reduce TMS. If to begin with 0.025 then the problem becomes infeasible. For fault at F₁ where R₂ acts as primary, Time of operation of standard inverse relay, $$t_{R_2} = \frac{TMS_{R_2} \times 0.14}{\left(\frac{I}{I_S}\right)^{0.02} - 1}$$ (where Is = 80A, I = 639A) $$=\frac{0.05\times0.14}{\left(639\times0\right)^{0.02}-1}=0.165\text{sec}$$ For fault at F_1 , R_1 will back up R_2 . Hence time of operation $R_1 = t_{R_2}$ + CTI (where CTI is the coordination time interval and CTI = 0.3sec.) $$= 0.165 + 0.3 = 0.465 sec$$ = 0.165 + 0.3 = 0.465sec i.e. $$0.465 = \frac{TMS_{R_1} \times 0.14}{\left(\frac{I}{I_S}\right)^{0.02} - 1}$$ (where I = 152A, Is = 60A) $$=\frac{TMS_{R_1}\times 0.14}{\left(152/60\right)^{0.02}-1}$$ $$TMS_{R_1} = 0.0623$$ For fault at F2, where R1 acts as primary, $$t_{R_1} = \frac{0.0623 \times 0.14}{\left(I/I_{S}\right)^{0.02} - 1}$$ (where I = 1652A, Is = 60A) = 0.127sec # 19.2 Example (contd..) Answer Iteration 1 (contd..) Relay R_4 will back up R_1 for fault at F_2 . Hence, time of operation of $R_4 = t_{R_1} + \text{CTI} = 0.127 + 0.3 = 0.427 \text{sec}$ i.e., $$0.427 = \frac{TMS_{R_4} \times 0.14}{\left(\frac{I}{I_S}\right)^{0.02} - 1}$$ (where I = 391A, Is = 160A) Then, $TMS_{R_A} = 0.055$ For fault at F_3 , where R_4 acts as primary relay, we have $$t_{R_4} = \frac{TMS_{R_4} \times 0.14}{\left(\frac{I}{I_S}\right)^{0.02} - 1}$$ (where I = 1097A, Is = 160A) = 0.196 sec Since relay R_3 has to back up R_4 , time of operation of relay $R_3 = t_{R_4} + CTI = 0.496 sec$ For a fault at F₃ i.e., $$0.496 = \frac{TMS_{R_3} \times 0.14}{\left(\frac{I}{I_S}\right)^{0.02} - 1}$$ (where I = 140A, Is = 60A) $$TMS_{R_3} = 0.0605$$ Now for fault at F_4 , where R_3 acts as primary, $$t_{R_3} = \frac{TMS_{R_3} \times 0.14}{\left(\frac{I}{I_S}\right)^{0.02} - 1}$$ (where I = 937A, Is = 60A) = 0.15sec ### 19.2 Example (contd..) Answer Iteration 1 (contd..) For fault F_4 , R_2 has to back up R_3 i.e., Time of operation of $R_2 = t_{R_3} + CTI = 0.45$ sec $$0.45 = \frac{TMS_{R_2} \times 0.14}{\left(\frac{I}{I_S}\right)^{0.02} - 1} \text{ (where I = 142A, Is = 80A)}$$ $$TMS_{R_2} = 0.037$$ We had assumed a value of 0.05 for TMS_{R_2} , but now the value has changed to 0.037. Therefore, let us update the TMS of R_2 to 0.037. Iteration 2 Repeating the same process as above, For fault at F₁, time of operation $$t_{R_2} = \frac{0.037 \times 0.14}{\left(639_{80}\right)^{0.02} - 1}$$ = 0.122sec Time of operation of $R_1 = t_{R_1} + CTI$ $$= 0.3 + 0.122 = 0.422$$ sec i.e., 0.422 = $$\frac{TMS_{R_1} \times 0.14}{\left(\frac{152}{60}\right)^{0.02} - 1}$$ or $TMS_{R_1} = 0.0565$ For fault at Eq. where R₁ acts as primary For fault at F_2 , where R_1 acts as primary, $$t_{R_1} = \frac{0.0565 \times 0.14}{\left(1652_{60}^{\prime}\right)^{0.02} - 1} = 0.1154$$ R₄ backs up R₁ for fault at F #### 19.2 Example (contd..) **Answer** Iteration 2 (contd..) Time of operation of $R_4 = t_{R_1} + CTI = 0.1154 + 0.3$ $$= 0.4154$$ i.e. 0.4154 = $$\frac{TMS_{R_4} \times 0.14}{\left(\frac{391}{160}\right)^{0.02} - 1}$$ $$TMS_{R_4} = 0.0535$$ Now, for fault at F_3 , where R_4 acts as primary, $$t_{R_4} = \frac{0.0535 \times 0.14}{\left(1097/160\right)^{0.02} - 1} = 0.191 \text{sec}$$ Since, relay R₃ backs up R₄, time of operation of relay R₃ = t_{R_4} + CTI = 0.191 + 0.3 = 0.491 i.e. $$0.491 = \frac{TMS_{R_3} \times 0.14}{\left(\frac{140}{60}\right)^{0.02} - 1}$$ $$TMS_{R_2} = 0.0599$$ For fault at F_4 , where R_3 acts as primary, Time of operation $$t_{R_3} = \frac{0.0599 \times 0.14}{\left(937/60\right)^{0.02} - 1} = 0.1484 \text{sec}$$ R₂ backs up R₃; Therefore, Time of operation of $R_2 = t_{R_3} + CTI = 0.3 + 0.1484$ = 0.4484sec i.e. $$0.4484 = \frac{TMS_{R_2} \times 0.14}{\left(\frac{142}{80}\right)^{0.02} - 1}$$ $$TMS_{R_2} = 0.0369$$ Now, let us update the TMS of R_2 to this new value, i.e., 0.0369 and repeat iteration. ### 19.2 Example (contd..) Answer Iteration 3 For fault at F₁, $$t_{R_2} = \frac{0.0369 \times 0.14}{\left(639_{80}\right)^{0.02} - 1}$$ = 0.1217sec For relay R₁, which has to back up R₂ Time of operation = 0.3 + 0.1217 = 0.4217 sec i.e. 0.4217 = $$\frac{TMS_{R_1} \times 0.14}{\left(\frac{152}{60}\right)^{0.02} - 1}$$ $$TMS_{R_1} = 0.0565$$ Then for fault at F₂, $$t_{R_1} = \frac{0.0565 \times 0.14}{\left(1652/60\right)^{0.02} - 1} = 0.1154 \text{sec}$$ Since R₄ backs up R₁, time of operation of R₄ $$= 0.1154 + 0.3 = 0.4154$$ sec i.e. 0.4154 = $$\frac{TMS_{R_4} \times 0.14}{\left(\frac{391}{160}\right)^{0.02} - 1}$$ $$TMS_{R_A} = 0.0535$$ For fault at F_3 , where R_4 acts as primary, we have $$t_{R_4} = \frac{0.0535 \times 0.14}{\left(1097/160\right)^{0.02} - 1} = 0.191 \text{sec}$$ ## 19.2 Example (contd..) Answer Iteration 3 (contd..) R₃ backs up R₄ Time of operation of $R_3 = 0.3 + 0.191 = 0.491 \text{sec}$ i.e. $$0.491 = \frac{TMS_{R_3} \times 0.14}{\left(\frac{140}{60}\right)^{0.02} - 1}$$ $$TMS_{R_3} = 0.0599$$ For fault at F₄, $$t_{R_3} = \frac{0.0599 \times 0.14}{\left(937/60\right)^{0.02} - 1}$$ = 0.1484sec Now R₂ backs up R₃ i.e. time of operation of R₂ = 0.3 + 0.1484 = 0.4484 = $$\frac{TMS_{R_2} \times 0.14}{\left(\frac{142}{80}\right)^{0.02} - 1}$$ $TMS_{R_2} = 0.0369$ which is same as the result of iteration 2 Therefore no more iteration is required. Hence, setting and coordination of all the four anticlockwise relays are complete. Coordination of all primary and back up relay pairs R_2 - R_1 , R_1 - R_4 , R_4 - R_3 and R_3 - R_2 for faults at F_1 , F_2 , F_3 and F_4 respectively are visualized in fig 19.2. ## 19.2 Example (contd..) Answer Iteration 3 For fault at F₁, $$t_{R_2} = \frac{0.0369 \times 0.14}{\left(639_{80}\right)^{0.02} - 1}$$ = 0.1217sec For relay R₁, which has to back up R₂ Time of operation = 0.3 + 0.1217 = 0.4217sec i.e. 0.4217 = $$\frac{TMS_{R_1} \times 0.14}{\left(152/60\right)^{0.02} - 1}$$ $$TMS_{R_1} = 0.0565$$ Then for fault at F₂, $$t_{R_1} = \frac{0.0565 \times 0.14}{\left(1652_{60}\right)^{0.02} - 1} = 0.1154 \text{sec}$$ Since R_4 backs up R_1 , time of operation of R_4 $$= 0.1154 + 0.3 = 0.4154sec$$ i.e. 0.4154 = $$\frac{TMS_{R_4} \times 0.14}{\left(\frac{391}{160}\right)^{0.02} - 1}$$ $$TMS_{R_{\star}} = 0.0535$$ For fault at F_3 , where R_4 acts as primary, we have $$t_{R_4} = \frac{0.0535 \times 0.14}{\left(1097/160\right)^{0.02} - 1} = 0.191 \text{sec}$$ ## 19.2 Example (contd..) Answer Iteration 3 (contd..) R₃ backs up R₄ Time of operation of $R_3 = 0.3 + 0.191 = 0.491 \text{sec}$ i.e. $$0.491 = \frac{TMS_{R_3} \times 0.14}{\left(\frac{140}{60}\right)^{0.02} - 1}$$ $$TMS_{R_3} = 0.0599$$ For fault at F₄, $$t_{R_3} = \frac{0.0599 \times 0.14}{\left(937/60\right)^{0.02} - 1}$$ = 0.1484sec Now R₂ backs up R₃ i.e. time of operation of R₂ = 0.3 + 0.1484 = 0.4484 = $$\frac{TMS_{R_2} \times 0.14}{\left(\frac{142}{80}\right)^{0.02} - 1}$$ $TMS_{R_2} = 0.0369$ which is same as the result of iteration 2. Therefore no more iteration is required. Hence, setting and coordination of all the four anticlockwise relays are complete. Coordination of all primary and back up relay pairs R_2 - R_1 , R_1 - R_4 , R_4 - R_3 and R_3 - R_2 for faults at F_1 , F_2 , F_3 and F_4 respectively are visualized in fig 19.2. ## 19.2 Example (contd..) # 19.2Example (contd..) Answer Setting and Coordination of Clockwise Relays Iteration 1 Now let us start setting all the clockwise relays. Let us start from relay R₅ for fault at F₄. Assume a TMS of 0.05 for relay R₅. Then, time of operation of relay R₅, $t_{R_5} = \frac{0.05 \times 0.14}{\left(553/80\right)^{0.02} - 1} = 0.1775$ i.e. Time of operation of back up relay $R_8 = t_{R_s} + CTI$ $$= 0.1775 + 0.3$$ = 0.4775sec Now, 0.4775 = $$\frac{TMS_{R_8} \times 0.14}{\left(\frac{197}{100}\right)^{0.02} - 1}$$ $$= 0.04656$$ $$TMS_{R_{8}}$$ For a fault at F_3 , where R_8 acts as primary, $$t_{R_8} = \frac{0.0465 \times 0.14}{\left(1764/100\right)^{0.02} - 1} = 0.11 \text{sec}$$ Now relay R_7 will back up R_8 . Then time of operation of R_7 = 0.11 + 0.3 = 0.41sec i.e., 0.41 = $$\frac{TMS_{R_7} \times 0.14}{\left(\frac{287}{128}\right)^{0.02} - 1}$$ $$TMS_{R_7} = 0.0477$$ R₇ acts as primary relay for fault at F₂. $$t_{R_7} = \frac{0.0477 \times 0.14}{\left(\frac{868}{128}\right)^{0.02} - 1} = 0.1711 \text{sec}$$ ## 19.2 Example (contd..) Answer Setting and Coordination of Clockwise Relays Iteration 1 (contd..) R₆ backs up R₇, i.e. Time of operation for $\ensuremath{\text{R}}_6$ $$= 0.1711 + 0.3 = 0.4711$$ i.e. 0.4711 = $$\frac{TMS_{R_6} \times 0.14}{\left(\frac{240}{160}\right)^{0.02} - 1}$$ $$TMS_{R_6} = 0.0274$$ For fault at F_1 , R_6 acts as primary, i.e., $$t_{R_6} = \frac{0.0274 \times 0.14}{\left(1365 / 160\right)^{0.02} - 1} = 0.0875 \text{sec}$$ R₅ backs up R₆ i.e. Time of operation of $R_5 = 0.0875 + 0.3 = 0.3875$ i.e., 0.3875 = $$\frac{TMS_{R_5} \times 0.14}{\left(\frac{272}{80}\right)^{0.02} - 1}$$ $$TMS_{R_s} = 0.0686$$ i.e. after 1^{st} iteration TMS of R_5 has been changed from 0.05 to 0.0686. Let us update TMS of R_5 to 0.0686 and begin iteration 2. #### 19.2 Example (contd..) Answei Setting and Coordination of Clockwise Relays Iteration 2 $$TMS_{R_5} = 0.0686$$ For fault F₄, $$t_{R_5} = \frac{0.0686 \times 0.14}{\left(553_{80}\right)^{0.02} - 1}$$ For fault at F_4 , R_8 backs up R_5 i.e. Time of operation of $R_5 = t_{R_5} + CTI = 0.2436 + 0.3$ = 0.5436sec i.e. $$0.5436 = \frac{TMS_{R_8} \times 0.14}{\left(\frac{197}{100}\right)^{0.02} - 1}$$ $$TMS_{R_8} = 0.053$$ For fault F_3 , where R_8 acts as primary, $$t_{R_8} = \frac{0.053 \times 0.14}{\left(1764 / 100\right)^{0.02} - 1} = 0.1256 \text{sec}$$ Relay R₇ backs up R₈ Time of operation of R7 = 0.1256 + 0.3 = 0.4256sec i.e. $$0.4256 = \frac{TMS_{R_7} \times 0.14}{\left(\frac{287}{128}\right)^{0.02} - 1}$$ $$TMS_{R_7} = 0.0495$$ # 19.2 Example (contd..) **Answer** Setting and Coordination of Clockwise Relays Iteration 2 (contd..) For fault at F₂, R₇ acts as primary, i.e. $$t_{R_7} = \frac{0.0477 \times 0.14}{\left(868/128\right)^{0.02} - 1} = 0.1776 \text{sec}$$ R₆ backs up R₇, i.e. Time of operation for $R_6 = 0.1776 + 0.3 = 0.4776 \text{sec}$ i.e. 0.4776 = $$\frac{TMS_{R_6} \times 0.14}{\left(\frac{240}{160}\right)^{0.02} - 1}$$ $$TMS_{R_6} = 0.0278$$ For fault at F_1 , R_6 acts as primary, i.e. $$t_{R_6} = \frac{0.0278 \times 0.14}{\left(1365 / 160\right)^{0.02} - 1} = 0.0888 \text{sec}$$ R₅ backs up R₆, i.e. Time of operation of $R_5 = 0.0888 + 0.3$ = 0.3888sec i.e. 0.3888 = $$\frac{TMS_{R_5} \times 0.14}{\left(\frac{272}{80}\right)^{0.02} - 1}$$ $$TMS_{R_s} = 0.0688$$ Now let us set TMS of R_5 to 0.0688 and repeat iteration. ## 19.2 Example (contd..) Answer Setting and Coordination of Clockwise Relays Iteration 3 $$TMS_{R_5} = 0.0688$$ For fault at $$F_4 t_{R_5} = \frac{0.0688 \times 0.14}{\left(553_{80}^{\circ}\right)^{0.02} - 1} = 0.2443$$ R₈ backs up R₅, i.e. Time of operation of $R_8 = t_{R_e} + CTI = 0.2443 + 0.3$ = 0.5443 sec $$0.5443 = \frac{TMS_{R_8} \times 0.14}{\left(\frac{197}{100}\right)^{0.02} - 1}$$ i.e. $$TMS_{R_8} = 0.0531$$ For fault at F_3 , R_8 acts as primary, Then $$t_{R_8} = \frac{0.0531 \times 0.14}{\left(1764/100\right)^{0.02} - 1} = 0.1258 \text{sec}$$ Relay R7 backs up R8 i.e. Time of operation of $R_7 = 0.3 + 0.1258 = 0.4258sec$ $$0.4258 = \frac{TMS_{R_7} \times 0.14}{\left(\frac{287}{128}\right)^{0.02} - 1}$$ $$TMS_{R_7} = 0.0495$$ # 19.2Example (contd..) Answer Setting and Coordination of Clockwise Relays Iteration 3 (contd..) For fault at F_2 , R_7 acts as primary, i.e. $$t_{R_7} = \frac{0.0495 \times 0.14}{\left(\frac{868}{128}\right)^{0.02} - 1} = 0.1776 \text{sec}$$ R_6 backs up R_7 , Time of operation of R_6 , $$= 0.3 + 0.1776 = 0.4776$$ sec i.e. 0.4776 = $$\frac{TMS_{R_6} \times 0.14}{\left(\frac{240}{160}\right)^{0.02} - 1}$$ $$TMS_{R_6} = 0.0278$$ For fault at F₁, R₆ acts as primary, $$t_{R_6} = \frac{0.0278 \times 0.14}{\left(1365 / 160\right)^{0.02} - 1} = 0.0888 \text{sec}$$ Since R_5 backs up R_6 for fault at F_1 , time of operation of R_5 = 0.3 + 0.0888sec = 0.3888sec i.e., 0.3888 = $$\frac{TMS_{R_5} \times 0.14}{\left(\frac{272}{80}\right)^{0.02} - 1}$$ $TMS_{R_5} = 0.0688.$ Since, the result of iterations 2 and 3 are the same, the iteration is complete. Thus, all the clockwise relays are set. The settings are tabulated in table 3. Coordination of all clockwise relay pairs R_6 - R_5 , R_7 - R_6 , R_8 - R_7 and R_5 - R_8 for faults at F_1 , F_2 , F_3 and F_4 are visualized in fig 19.3. # 19.2Example (contd..) # 19.2 Example (contd..) **Answer** Setting and Coordination of Clockwise Relays | ing and coordination of clockwise kelays | | | | | | | |--|--|--------|---------------------------|--|--|--| | | Table 3 TMS Setting for Relay | | | | | | | Relay | ay 1 st Iteration 2 nd Iteration | | 3 rd Iteration | | | | | R ₁ | 0.623 | 0.0565 | 0.0565 | | | | | R ₂ | 0.05 | 0.0369 | 0.0369 | | | | | R ₃ | 0.0605 | 0.0599 | 0.0599 | | | | | R ₄ | 0.055 | 0.0535 | 0.0535 | | | | | R ₅ | 0.05 | 0.0686 | 0.0688 | | | | | R ₆ | 0.0274 | 0.0278 | 0.0278 | | | | | R ₇ | 0.0477 | 0.0495 | 0.0495 | | | | | R ₈ | 0.04656 | 0.053 | 0.0531 | | | | | | Review Questions | |----|---| | 1. | Explain the process of the directional relay coordination in a mesh system. | | 2. | In the given example if the standard inverse relays are replaced with very inverse relays. Find out whether relay | |----|---| | | coordination is achievable and comment on the selection of relays. | | 3. | Develop a program for the given example. | | Re | ecap | • In a meshed system both clockwise and anticlockwise loops have to be considered separately. In this lecture we have learnt the following: • The directional relay coordination problem in a meshed system.