
Module 9 : Numerical Relaying II : DSP Perspective

Lecture 33 : Discrete Fourier Transform

   Objectives

   In this lecture, we will

Derive Discrete Fourier Transform (DFT) and its inverse.

Different forms of DFT and IDFT will be derived.

33.1 Motivation

 Consider a finite duration signal  of duration  sampled at (fig 33.1) a uniform rate  such that

  where  is an integer .

 Then the Fourier transform of signal is given by:

 

 If we now evaluate the above integral by trapezoidal rule of integration after padding two zeros (red dots
in fig 33.1) at the extremity on either side [where the signal is zero], we obtain the following expressions.

 (1)

 The corresponding inverse which is used to reconstruct the signal is given by:

  (2)

 

If from equation (1) we could compute complete frequency
spectrum i.e.  then (2) would imply that we

can obtain . The fallacy in the above statement is

quite obvious as we have only finite samples and the curve
connecting any 2-samples can be defined plausibly in infinitely
many ways (see fig 33.2). This suggests that from (1), we should
be able to derive only limited amount of frequency domain
information.
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33.1 Motivation (contd..)

 

Since, we have N-data points [real] and  a complex number contains both magnitude and phase

angle information in the frequency domain (2-units of information), it is reasonable to expect that we

should be in a position to predict atmost  transforms  for original signal.

 Now, let 

 and  (3)

 then substituting (3) in (1), we get

 

Note that our choice of frequency is such that the exponential term in (1) is independent of . The



 
intuition for choosing such  is that, in principles we are attempting a transform on discrete samples

which may (or) may not have a corresponding analog ‘parent' signal. This suggests to us the following
discrete version of Fourier transform for a finite discrete sequence 

  

33.1 Motivation (contd..)

  (4)

 

Our next job should be to come up with an inverse transformation. If inverse transformation exists, then
there is no loss of information from discrete (time) domain to frequency domain and vice-versa.
Existence of inverse will establish, transform nature of (4). If (2) defines IFT in continuous domain, in the
discrete domain, by analogy of (1) and (4) we can hypothesize following inverse transform.

 (5)

 
Where K is a suitable scaling factor.
Our next job is to verify that indeed (4) and (5) define a transformation pair. Substituting (4) in (5), we
get following expression for right hand side of (5).

 Right hand side (6)

 [Note the use of dummy subscript ]

 Let us work this expression out in a long hand fashion; for compactness we use notation 

 
In the above expression, for the first row  is set to zero, for the second row it is set to one and for the
last row .

33.1 Motivation (contd..)

 Now, grouping terms column wise, we get

 



 Note that this jugglery shows that we can interchange the summation order. One order indicates row
wise and another column wise summation

 i.e.  (7)

 Our primary task now is to evaluate the expression.

 

 We now claim that

 

 Proof: For , 

 
Hence, the first case is obvious.
Now, if , let 

 

33.1 Motivation (contd..)

 Now, 

 where 

 AS  is integer, then   

 Note that we have used the following geometric series expression 

 

Thus, RHS in (6) is equal to 

We see that equation (6) defines the inverse transformation if we choose ;

Thus, N-point DFT and IDFT for samples  are defined as follows.

 

 where m = 0, ........., N - 1
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33.1 Motivation (contd..)

 
Note that in general DFT and inverse DFT can be defined in many ways, each only differing in choice of
constant and . Thus, the generic form of DFT and IDFT is as follows:

 

DFT

i.e.  

IDFT

 

 

 
The constraint in choosing the constraints is that product 

For example, when

   



   

 

 Choice of  is commonly used in relaying because it simplifies phasor estimation.

  

 Review Questions

1. Repeat the DFT and IDFT derivation yourself.

 

   Recap

   In this lecture we have learnt the following:

 Derived DFT and IDFT.
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