
Module 3 : Sequence Components and Fault Analysis

Lecture 10 : Sequence Components

   Objectives

   In this lecture we will

Introduce sequence components.

Extract positive, negative and zero sequence components from  unbalanced phasors.

Synthesize a  unbalanced phasor using sequence components.

Analyze , S-L-G, L-L and L-L-G faults using sequence components.

10.1 Introduction

 

Electrical systems occasionally experience short circuits. These short circuits are hazardous to the safety
of both equipment and people. Though the protective devices will isolate the faults safely, the parts of the
system should withstand the resulting mechanical and thermal stresses. Fault impedance and fault current
estimates also form input for the setting and coordination of protective devices like overcurrent relay,
distance relay etc. Hence it is very important to estimate the magnitude of the fault currents. The
equipment rating are decided based on this value. Fault currents can be estimated either by hand
calculation or by fault analysis program.

 Sources of Fault Current

 The fault current in a system can be contributed by any of the following.

Synchronous Motors and Condensers

Induction Machines

Synchronous Generators

Electrical Utility System

Distributed Generation

10.2 Sequence Components

Faults in a 3 phase system can be single line to ground, double line to ground, line to line or three phase.
Power system operation during any of these faults can be analyzed using sequence components. The
method of sequence component was discovered by Charles L. Fortescue in 1918. He came up with the
following intuition that any  unbalanced system has 6 degrees of freedom; whereas, a  balanced

system has only 2 degrees of freedom. Hence an unbalanced  system having 6 degrees of freedom can

be synthesized by 3 sets of balanced system each having 2 degrees of freedom.
Note: This idea can be easily extended to N-phase system where .



 For a three phase system with phase sequence a-b-c, the three sets of balanced phasors are called
positive, negative and zero sequences.

 

 

 

 

10.2 Sequence Components (contd..)
10.2.1Positive Sequence Component

 It represents a set of balanced phasors ,  and . If we choose 'a' phase as reference phasor.

  (1)

  (2)

 Where 

 

‘a' is cubic root of unity. Multiplying a phasor by ‘a'
causes a rotation of  in the anticlockwise

direction (lead of ). Similar usage of a2 results in

 in the anticlockwise direction or equivalently a

lag of . The positive sequence of phasors is the
same balanced set of phasors that we expect in steady
operation of an ideal power system. Thus, a, b and c
phasors are nothing but Va1, Vb1 and Vc1 respectively.
The sequence phasors are shown in fig 10.1. If the
stator of an induction motor is subjected to positive
sequence voltage, it should cause rotation in
anticlockwise direction. Note that placement of Va1
can be done arbitrarily in the x-y plane. But once, Va1
is fixed both Vb1 and Vc1 are fixed.

 
Thus, a positive sequence set of phasors have 2 degrees of freedom i.e. we can decide placement of

|Va1| (magnitude) and  arbitrarily.

10.2 Sequence Components (contd..)

10.2.2Negative Sequence Component

 
Negative sequence phasors are used to represent a balanced set of phasors (each of equal magnitude
and phase difference of ) but in which the order of Vb and Vc has been reversed with respect to the
positive sequence phasor. Thus,

  (3)

  (4)

 

This is illustrated in fig 10.2. Note that placement of Va2 in x – y plane can be done arbitrarily. However,
once Va2 is fixed both Vb2 and Vc2 are automatically fixed. Thus, negative sequence component have
exactly two degrees of freedom which is to fix magnitude and angle of Va2.

If stator of a  induction motor is subject to negative sequence voltage the rotor will rotate in a

clockwise direction. i.e. in exactly opposite direction to that obtained with the positive sequence voltage.



 

10.2.3Zero Sequence Component

 The zero sequence phasors Va0, Vb0 and Vc0 are a set of balanced phasors defined as follows.

  (5)

10.2 Sequence Components (contd..)

10.2.2Zero Sequence Component (contd..)

 
Again there are two degrees of freedom in placing the zero sequence phasors. Application of zero
sequence does not create any rotation to the rotor of an induction machine. This is because the net mmf
induced in the air gap is zero.

 
An unbalanced set of phasors can be synthesized by linear combination (superposition of positive,
negative and zero sequence phasors). 
For example,




10.3 Mathematical description of sequence components

 

So far we have seen that,

 

 

 
Using equation (1) to (5), we get

  (6)

 

or stated more compactly, 

 where  and 

 
Matrix [T] defines a linear transformation of phasors from sequence domain to phase domain. Matrix [T]
enjoys some interesting properties. For example, every pair of rows or columns of matrix [T] are
orthogonal. For example,

 

If c1 = (1, 1, 1) t and c2 = (1, a2, a)t

Then, (c1)H c2 = (c2)H c1 = 0 where H is Hermitian operator defined as transpose and conjugate of a
vector or matrix.
Similarly, 
In other words, TH T = T TH = D, where D is a diagonal matrix

 With 

 It can be verified that

   

 and (7)

10.3 Mathematical description of sequence components (contd..)

10.3.1Geometrical interpretation

 

We illustrate the inverse transformation for phase to sequence domain by geometrical method. We are
given a set of unbalanced phasors and we have to compute the sequence components from it.
Algebraically, it is simply application of equation (7). Geometrically, it can be interpreted by noting that
'a' represents  rotation of phasor in anticlockwise direction and a2 is  rotation of phasor in
anticlockwise direction.



 

  

10.3 Mathematical description of sequence components (contd..)

10.3.2Significance of Transformation

 One should understand the significance of linearity in sequence component transformation clearly.  

Sequence transformation matrix [T] provides a methodology to convert sequence domain phasors to
phase domain

 phasors.

Conversely, inverse transformation matrix [T -1] provides a mechanism to convert phasors in a-b-c
domain to sequence

 domain. This is typically required for analysis purpose. Also, the mapping between phase domain and
sequence domain is 1:1.

There is no loss of information in either domain. In other words, both domains have identical information
content.

The transformations [T] and [T-1 ] are linear i.e. if  and  are two sets of three phase phasors

in a-b-c domain,

 
then superposition  and  in phase domain is equivalent to corresponding superposition in

sequence domain. Conversely, if we superpose phasors in sequence domain, then in a-b-c domain also it
amounts to equivalent superposition of phasors. Thus,

 

 

 Where  , and  and  are complex numbers.

 Similarly, 

 
Sequence components provide a methodology to view unbalanced phasors as a set of balanced phasors.
If a network is balanced, then the resulting analysis gets extremely simplified. This is because we are




 able to break a three phase network into three decoupled sequence networks (under some acceptable
symmetry assumptions). We now elaborate on this concept of decoupled sequence networks.

10.4 Modeling Network in Sequence Components

 

We now show that corresponding network modeling can also be simplified in sequence domain. If the
three phase network elements enjoy a particular symmetry (circulant structure) then, application of
sequence component transformation diagonalizes three phase impedance or admittance matrix. Thus, we
achieve decoupling in positive, negative and zero sequence networks, provided that network is balanced.
Hence, sequence component analysis is used when network is balanced but phasors or loads are
unbalanced. To begin with, consider a transposed transmission line whose three phase model is given by
the following equation. Zs is the self impedance of transmission line and Zm is the mutual impedance

between two phases. These quantities can be evaluated from GMD and GMR of transmission line. , 

 and  is the drop in phase voltage across the line due to currents Ia, Ib and Ic respectively then,

  (8)

 Applying the transformation,

  

 and  

   with phase 'a' as reference phasor.

 we get,

 Where

 Hence,  

  (9)

10.4 Modeling Network in Sequence Components (contd..)

 

Let Z0 = Zs + 2Zm
Z1 =Zs - Zm
Z2 = Zs - Zm
Then equation (8) can be decoupled into three separate equations one for each sequence component as
follows.

,  and  

Also, note that ,  and  are the eigen values of the phase-impedance matrix . Reference

phasor subscript 'a' has been dropped for convenience.
Thus, we see that positive, negative and zero sequence networks are decoupled. In general, if Z matrix
has following circulant symmetry we can decouple the positive, negative and zero sequence networks by
sequence transformation T. It can be shown that if, 

 , then   



 

where 

            

            

(10)

 Thus, all the sequence components can be determined from the above equations.

10.4.1Advantages of Sequence Transformation

It is used when the network is balanced. For a n - node system a  linear system solver 

 can

 be decoupled into three  linear system solvers,  and . Hence it

provides decoupling of the network.

It can be applied for both balanced and unbalanced loads. However, simplicity and elegance of sequence
component

 approach reduces when network is unbalanced.

Zero sequence current is used to provide sensitive earth fault detection technique.

10.5 Fault Current Calculation in Sequence Domain

 
Consider a transposed transmission line connected to an ideal voltage source E. The fault appears at the
remote end of transmission line. We now derive sequence network interconnections for different fault
types. We begin with a three phase fault.

10.5.1Three phase fault: Three phase faults are considered to be symmetrical and hence sequence
components are not

 necessary for their calculation.

 

 

It can be easily shown that for a three phase
fault, fault currents are balanced with, 
I2 = I0 = 0 and I1 = Ia 

(Hint : I012 = T -1 Iabc with Ib = a2Ia and Ic
= aIa). 
Thus, for a Three Phase Fault only Positive
Sequence Network is considered. The fault
currents are given by the following equations

 (solid fault)  

 (Fault through impedance

Zf)

 

10.5.2Single Line to Ground Fault (SLG):  
On an unloaded system (fig 10.7), let there
be 'a' phase to ground fault with a fault
impedance Zf. Then, the faulted system is
described by,
Ia = If, Ib = 0 and Ic = 0. Applying sequence
transformation, we get 
Thus, I0 = I1 = I2 =Ia/3. Let Vf represent the
voltage of the transmission line at the
receiving end of the line where fault is
created. 
Further, from equation,



 

 (10)

 
Equivalent in the sequence domain we get by
premultiplying (9) by T -1

i.e.

  

 or  

   (11)

   (12)

   (13)

10.5 Fault Current Calculation in Sequence Domain (contd..)

 
Since for SLG fault at phase 'a'  we can add equations 11, 12 and 13. In

addition when we invoke the condition that I0 = I1 = I2 = Ia/3 we get, 

 

 

 

 The SLG fault can be visualized by a series connection of positive, negative and zero sequence networks
with three times the fault impedance.

 The positive sequence, negative sequence and Zero sequence fault currents are given by following
equations.

 (Solid Fault)

 (Fault through impedance Zf)

 On similar lines following equations can be derived for LL and LLG faults.

LL fault:
 The Zero Sequence Data is not required for this

fault.

 (solid fault)



  (fault through impedance

Zf)

 

10.5 Fault Current Calculation in Sequence Domain (contd..)
10.5.3Line to Line Ground Fault (LLG):

1. Bolted Fault:

  

2. Fault current through impedance Zf

Fault current in phases b and c:
Ib = I0 + a2Ia1 + aIa2

Ic = I0 + aIa1 + a2Ia2
IF = Ib + Ic = 3I0

 Zf is fault impedance between the lines, while ZFG is the fault impedance to Ground.

 

 Review Questions
1. What are sequence components?

2. Derive the sequence transformation matrix using 'c' phase as reference phasor.

3. Show that sequence transformation is linear.

4.
If Zs is the self impedance and Zm mutual impedance of a transmission line, show that Z0 = Zs + 2Zm
and Z1 and

 Z2 = ZS - Zm.

5. Derive the equation for fault current in (a) L-L fault with fault impedance Zf. (b) L-L-G fault.

6. If we do not want to lose information during a transformation 'f' from domain say A to B, then it is



required that 'f' should

 be invertible. In addition, to simplify analysis, we prefer linear transformations. List out some other
transformations that

 you have come across in electrical engineering.

7. Clarke's transformation with 'a' phase as reference phasor is defined as follows:

 

 Show that the transformation matrix is invertible. Hence, define the inverse transformation from
Clarke's components to phase components.

8. Using Clarke's transformation show that

 1) for a - g fault

     

     

 2) b - c - g fault

     

 3) b - c fault

       

 4) 3 - phase fault

     

9. Suppose that in an DSP implementation of relay, we have to choose between the sequence
transformation and Clarke's

 transformation suggest your choice and justify it from computational requirement and ability to
correctly detect a fault.

   Recap

   In this lecture we have learnt the following:

Sources of fault current.

Method to extract sequence components from unbalanced phasor.

Advantages of sequence transformation.

Derivation of sequence transformation matrix.

Fault current formulae and interconnection of sequence network for three phase, S-L-G, L-L and L-L-G
faults.
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