Module 3 : Sequence Components and Fault Analysis

Lecture 11 : Sequence Components (Tutorial)

Objectives

In this lecture we will solve some tutorial problems to

- To extract sequence components from an unbalanced phasor.
- Define sequence transformation with ' b ' as reference phasor.
- Analyze the effect of changing reference phasor.
- Find out fault currents for S-L-G, L-L and L-L-G faults.

1. The currents in a 3- ϕ unbalanced system are given by

$$
\overrightarrow{I_{a}}=(10+j 4) A, \overrightarrow{I_{z}}=(11-j 9) A, \overrightarrow{I_{c}}=(-15+j 9) A
$$

Calculate the zero, positive and negative sequence currents.
Ans: $\quad \overrightarrow{I_{a 0}}=\frac{1}{3}\left(\overrightarrow{I_{a}}+\overrightarrow{I_{b}}+\overrightarrow{I_{c}}\right)$

$$
=\frac{1}{3}(10+j 4+11-j 9-15+9 j)
$$

$$
=\frac{1}{3}(6+j 4)=(2+j 1.33) A
$$

$$
\overrightarrow{I_{a 1}}=\frac{1}{3}\left(\overrightarrow{I_{a}}+a \overrightarrow{I_{b}}+a^{2} \overrightarrow{I_{c}}\right)
$$

where $a=-0.5+j 0.866$
$a^{2}=-0.5-j 0.866$
$=\frac{1}{3}((10+j 4)+(-0.5+j 0.866)(11-j 9)+(-0.5-j 0.866)(-15+j 9))$
$=\frac{1}{3}(10+j 4+2.294+j 14.026+15.294+j 8.49)$
$=\frac{1}{3}(27.588+j 26.516)=9.196+j 8.84 A$
$\overrightarrow{I_{a 2}}=\frac{1}{3}\left(\overrightarrow{I_{a}}+a^{2} \overrightarrow{I_{b}}+a \overrightarrow{I_{c}}\right)$
$=\frac{1}{3}((10+j 4)+(-0.5-j 0.866)(11-j 9)+(-0.5+j 0.866)(-15+j 9))$
$=\frac{1}{3}(10+j 4-13.294-j 5.026-0.294-j 17.49)$

$$
=\frac{1}{3}(-3.588-j 18.516)=-1.196-j 6.172 A
$$

1.

Ans:
b - phase

$$
\begin{aligned}
& \overrightarrow{I_{30}}=\overrightarrow{I_{a 0}}=(2+j 1.33) \mathrm{A} \\
& \overrightarrow{I_{b 1}}=a^{2} \overrightarrow{I_{a 1}}=(-0.5-j 0.866)(9.196+j 8.84) \\
& =3.06-j 12.38 \mathrm{~A} \\
& \overrightarrow{I_{32}}=a \overrightarrow{I_{a 2}}=(-0.5+j 0.866)(-1.196-j 6.172) \\
& =5.94+j 2.05 \mathrm{~A}
\end{aligned}
$$

c - phase

$$
\begin{aligned}
& \overrightarrow{I_{c 0}}=\overrightarrow{I_{a 0}}=(2+j 1.33) \mathrm{A} \\
& \overrightarrow{I_{c 1}}=a \overrightarrow{I_{a 1}}=(-0.5+j 0.866)(9.196+j 8.84) \\
& =-12.25+j 3.54 \mathrm{~A} \\
& \overrightarrow{I_{c 2}}=a^{2} \overrightarrow{I_{a 2}}=(-0.5-j 0.866)(-1.196-j 6.172) \\
& =-4.747+j 4.12 \mathrm{~A}
\end{aligned}
$$

The zero, positive and negative sequence voltages of phase 'a' are given below. Find out the phase
2. voltages $\overrightarrow{V_{a}}, \overrightarrow{V_{b}}$ and \vec{V}_{c}.

$$
\overrightarrow{V_{0}}=2000^{\circ}, \overrightarrow{V_{1}}=210-30^{\circ}, \overrightarrow{V_{2}}=150 \underline{190^{\circ}}
$$

Ans: $\quad \overrightarrow{V_{a}}=\overrightarrow{V_{0}}+\overrightarrow{V_{1}}+\overrightarrow{V_{2}}$

$$
\begin{aligned}
& =200|0+210|-30+150 \mid 190 \\
& =200+182-j 105+-147.7-j 26.1 \\
& =234.3-j 131.1=268.5 \mid-29.2^{\circ} \mathrm{V} \\
& \overrightarrow{V_{b}}=\overrightarrow{V_{0}}+a^{2} \overrightarrow{V_{1}}+a \overrightarrow{V_{2}} \\
& =200|0+1| 240 \times 210|-30+1| 120 \times 150 \mid 190^{\circ} \\
& =200|0+210| 210+150 \mid 310 \\
& =200-181.8-j 105+96.4-j 114.9
\end{aligned}
$$

2.

$$
=114.6-j 219.9
$$

$$
=248-62.50 \mathrm{~V}
$$

$$
\overrightarrow{V_{c}}=\overrightarrow{V_{0}}+a \overrightarrow{V_{1}}+a^{2} \overrightarrow{V_{2}}
$$

$$
=200 \underline{0}+1|120 \times 210|-30+1|240 \times 150| 190
$$

$$
\begin{aligned}
& =200[0+210 \mid 90+150.70 \\
& =200+j 210+51.3+j 141=251.3+j 351=431.754 .4 \mathrm{~V}
\end{aligned}
$$

3. A $20 \mathrm{MVA}, 6.6 \mathrm{kV} 3$-phase generator has a positive sequence impedance of $\mathrm{j} 1.5 \Omega$, negative sequence impedance of
$j 1.0 \Omega$ and zero sequence impedance of $j 0.5 \Omega$. and $P_{m}=0(a)$ If a single phase to ground fault occurs on phase 'a' find out the fault current. (b) If the fault is through an impedance of $j 2 \Omega$, what will be the fault current?

Ans: The fault has occurred on 'a' phase. Taking 'a' phase as reference,
(a) $\quad V_{a}=\frac{6.6 \times 10^{3}}{\sqrt{3}}=3810 \mathrm{~V}$

For a single line to ground fault,

$$
I_{1}=I_{2}=I_{0}=\frac{V}{Z_{1}+Z_{2}+Z_{0}}=\frac{3810}{j 1.5+j 1.0+j 0.5}=\frac{3810}{j 3}=-j 1270.2 \mathrm{~A}
$$

Fault current $I_{a F}=I_{1}+I_{2}+I_{0}=3 I_{1}=3 \times-j 1270.2=-j 3810.5 \mathrm{~A}$
(b) If the fault is through an impedance of $j 2 \Omega$

$$
\begin{aligned}
& I_{1}=I_{2}=I_{0}=\frac{V}{Z_{1}+Z_{2}+Z_{0}+3 Z_{f}} \\
& =\frac{3810}{j 1.5+j 1.0+j 0.5+(j 2) \times 3} \\
& =\frac{3810}{j 9}=-j 423.3 \mathrm{~A} \\
& I_{ه f}=3 I_{1}
\end{aligned}
$$

In a 3ϕ system, if the per unit values of positive, negative and zero sequence reactances are given by
4. $j 0.1, j 0.085$
and $j 0.05$ respectively. Determine the fault current, if the fault is (a) L-L-G (b) L-L.
Ans: (a) For L-L-G fault involving phases b \& c.

$$
\overrightarrow{V_{b}}=\overrightarrow{V_{c}}=0 \overrightarrow{I_{a}}=0, \quad Z_{1}=j 0.1 p u \quad Z_{2}=j 0.085 p u \quad Z_{0}=j 0.05 p u
$$

$$
\overrightarrow{I_{a}}=\overrightarrow{I_{a 0}}+\overrightarrow{I_{a 1}}+\overrightarrow{I_{a 2}}=0
$$

$$
\overrightarrow{I_{a l}}=\frac{V}{Z_{1}+\frac{Z_{2} Z_{0}}{Z_{2}+Z_{0}}}
$$

Let $\mathrm{V}=1 \mathrm{pu}$

$$
\begin{aligned}
& \text { i.e., } I_{a 1}=\frac{1}{0.1 j+\frac{j 0.085 \times j 0.05}{j 0.085+j 0.05}} \\
& =\frac{1}{j 0.1+j 0.032}=\frac{1}{j 0.132}=-j 7.6 \mathrm{pu}
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{I_{a 0}}=-I_{a 1} \frac{Z_{2}}{Z_{2}+Z_{0}}=\frac{-(-j 7.6) \times j 0.05}{j 0.085+j 0.05} \\
& =\frac{j 7.6 \times j 0.05}{j 0.135}=j 2.82 p u \\
& \overrightarrow{I_{a 0}}=\frac{1}{3}\left(\overrightarrow{I_{a}}+\overrightarrow{I_{b}}+\overrightarrow{I_{c}}\right) \\
& =\frac{1}{3}\left(\overrightarrow{I_{z}}+\overrightarrow{I_{c}}\right) \text { since } \overrightarrow{I_{a}}=0 \text { or } \overrightarrow{I_{z}}+\overrightarrow{I_{c}}=3 \overrightarrow{I_{a 0}} \\
& \text { i.e., Fault current }=\overrightarrow{I_{b}}+\overrightarrow{I_{c}}=3 \overrightarrow{I_{a 0}} \\
& =3 \overrightarrow{I_{a 0}}=3 \times j 2.82 p u \\
& =j 8.44 p u
\end{aligned}
$$

4.

Ans:
(b) L-L fault

For line to line fault between ' b ' and ' c '
$I_{0}=0$
$I_{1}=-I_{2}=\frac{V}{Z_{1}+Z_{2}}$
$I_{1}=\frac{V}{Z_{1}+Z_{2}}=\frac{1}{j 0.1+j 0.085}=\frac{1}{j 0.185}=-j 5.4 p u$
$I_{2}=-(-j 5.4)=j 5.4$
Fault current $=I_{b}=-I_{c}$
$I_{z}=\overrightarrow{I_{0}}+a^{2} \overrightarrow{I_{1}}+a \overrightarrow{I_{2}}$
i.e., $I_{z}=0+(-0.5-j 0.866)(-j 5.4)+(-0.5+j 0.866)(j 5.4)$
$=j 2.7-4.68+-j 2.7-4.68$
$=-9.36 p u$
i.e., Fault current $=-9.36 p u$
5. Calculate the positive, negative and zero sequence impedance of a feeder if its self impedance is $\mathrm{j} 1.67 \Omega$ and mutual
impedance is $\mathrm{j} 0.67 \Omega$.
Self impedance $Z_{s}=1.67 \Omega$, mutual impedance $Z_{m}=0.67 \Omega$

Ans: Positive sequence impedance $=Z_{s}-Z_{m}$

$$
\begin{aligned}
& =1.67-0.67 \\
& =1 \Omega
\end{aligned}
$$

Negative sequence impedance $=Z_{s}-Z_{m}$

$$
\begin{aligned}
& =1.67-0.67 \\
& =1 \Omega
\end{aligned}
$$

Zero sequence impedance $=Z_{s}+2 Z_{m}$

$$
\begin{aligned}
& =1.67+2 \times 0.67 \\
& =3.01 \Omega
\end{aligned}
$$

6. Assuming b - phase to be reference phasor define the sequence transformation matrix.

Ans: With 'b' phase as reference phasor, the transformation matrix can be defined as follows.

$$
\left[\begin{array}{l}
V_{b} \\
V_{c} \\
V_{a}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1
\end{array} 11 \begin{array}{ll}
1 a^{2} & a \\
1 & a
\end{array} a^{2}\left[\begin{array}{l}
V_{b 0} \\
V_{b 1} \\
V_{b 2}
\end{array}\right]\right.
$$

Justifications:
Now, if $V_{b 1}=V_{b 2}=0$, i.e. only zero sequence excitation is present, then we get
$\overrightarrow{V_{b}}=\overrightarrow{V_{c}}=\overrightarrow{V_{a}}=\overrightarrow{V_{b 0}}$, thus we see that all the zero sequence components are extracted.
If $V_{b 2}=V_{b 0}=0$ i.e., only positive sequence excitation is present, then,
$V_{b}=V_{b 1}\left[\because V_{b}\right.$ being reference phasor]
$V_{c}=a^{2} V_{b 1}$ [i.e., V_{c} lags V_{b} by 120°]
$V_{a}=a V_{b 1}$ [i.e., V_{b} lags V_{a} by 120°]
Thus, the positive sequence component is properly extracted. Similarly, if

$$
V_{b 1}=V_{z 0}=0, \text { only negative sequence excitation is present. }
$$

i.e., we will get

$$
\begin{aligned}
& V_{b}=V_{b 2} \\
& V_{c}=a V_{b 2} \text { [i.e., } V_{b} \text { lags } V_{c} \text { by } 120^{\circ} \text {] } \\
& V_{a}=a^{2} V_{b 1} \text { [i.e., } V_{a} \text { lags } V_{b} \text { by } 120^{\circ} \text {] }
\end{aligned}
$$

7. Comment if the two - sequence transformations obtained by taking 'a' phase and 'b' phase as reference are identical or
not.
Ans: With 'a' phase as reference phasor, the sequence transformation is defined as,

$$
\begin{align*}
& {\left[\begin{array}{l}
V_{a} \\
V_{b} \\
V_{c}
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right]\left[\begin{array}{l}
V_{0} \\
V_{1} \\
V_{2}
\end{array}\right]} \tag{1}\\
& \text { or } V_{a b c}=T_{a} V_{a}^{012}
\end{align*}
$$

With 'b' phase as reference phasor, the sequence transformation is defined as,

$$
\left[\begin{array}{l}
V_{b} \tag{2}\\
V_{c} \\
V_{a}
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right]\left[\begin{array}{l}
V_{0} \\
V_{1} \\
V_{2}
\end{array}\right]
$$

Now, rearranging the equation (2) to follow the same order as (1) we get,

$$
\begin{aligned}
& {\left[\begin{array}{l}
V_{a} \\
V_{b} \\
V_{c}
\end{array}\right]=\left[\begin{array}{lll}
1 & a & a^{2} \\
1 & 1 & 1 \\
1 & a^{2} & a
\end{array}\right]\left[\begin{array}{l}
V_{0} \\
V_{1} \\
V_{2}
\end{array}\right]} \\
& \text { or } V_{a b c}=T_{b} V_{b}^{012}
\end{aligned}
$$

Clearly, T_{a} and T_{b} are not identical.
8. In problem No. 2 if the data represented sequence components with 'b' phase as reference phasor, instead of 'a'
phase, compute $\overrightarrow{V_{a}}, \overrightarrow{V_{z}}$ and $\overrightarrow{V_{c}}$. Comment on the result.
Ans: With 'b' phase as reference phasor, the sequence transformation is given by,

$$
\left[\begin{array}{l}
V_{b} \\
V_{c} \\
V_{a}
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right]\left[\begin{array}{l}
V_{0} \\
V_{1} \\
V_{2}
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right]\left[\begin{array}{l}
200\lfloor \\
210\lfloor-30 \\
150\lfloor 190
\end{array}\right]
$$

We will get $V_{b}=268.5-29.2^{\circ}=\left(V_{a}^{(o l d)}\right)$

$$
\begin{aligned}
& V_{c}=248-62.5^{\circ}\left(V_{b}^{(o d d)}\right) \\
& V_{a}=431.7 \underline{54.4^{\circ}}\left(V_{c}^{(o d d)}\right)
\end{aligned}
$$

Hence, we can conclude that changing of reference phasor causes renaming of phasors and hence a different result.
9. Analyze a bolted S-L-G fault on phase 'b' of an unloaded transmission line using sequence components with b-phase
as reference phasor.
Ans: With b- phase as reference phasor we have

$$
V_{b}=V_{b 0}+V_{b 1}+V_{b 2}
$$

Now, for a bolted S-L-G fault $V_{b}^{f}=0$;
Therefore,

$$
\left[\begin{array}{l}
I_{z 0} \\
I_{b 1} \\
I_{z 2}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & a & a^{2} \\
1 & a^{2} & a
\end{array}\right]\left[\begin{array}{l}
I_{b} \\
I_{c} \\
I_{a}
\end{array}\right]
$$

$=\frac{1}{3}\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & a & a^{2} \\ 1 & a^{2} & a\end{array}\right]\left[\begin{array}{l}I_{f} \\ 0 \\ 0\end{array}\right]$
i.e., $I_{b 0}=I_{b 1}=I_{b 2}=I_{f} / 3$

Based on 3 phase model of balanced circuit

$$
\left[\begin{array}{c}
\Delta V_{b} \\
\Delta V_{c} \\
\Delta V_{a}
\end{array}\right]=\left[\begin{array}{ccc}
Z_{s} & Z_{m} & Z_{m} \\
Z_{m} & Z_{s} & Z_{m} \\
Z_{m} & Z_{m} & Z_{s}
\end{array}\right]\left[\begin{array}{c}
I_{b} \\
I_{c} \\
I_{a}
\end{array}\right]
$$

Applying sequence transformation,

$\left[\begin{array}{l}\Delta V_{b 0} \\ \Delta V_{b 1} \\ \Delta V_{b 2}\end{array}\right]=T^{-1} \quad Z \quad T\left[\begin{array}{l}I_{30} \\ I_{b 1} \\ I_{32}\end{array}\right]$
$\Delta V_{z}^{012}=\operatorname{diag}\left(Z_{0} Z_{1} Z_{2}\right) I_{z}^{012}$
or
$\Delta V_{30}=Z_{0} I_{30}$

$$
\begin{aligned}
& \Delta V_{b 1}=Z_{1} I_{b 1} \\
& \Delta V_{b 2}=Z_{2} I_{b 2} \\
& \text { where } Z_{0}=Z_{s}+2 Z_{m} \\
& Z_{1}=Z_{2}=Z_{s}-Z_{m}
\end{aligned}
$$

9.

Ans: The terminal voltages are given by,

$$
\left[\begin{array}{l}
V_{b} \\
V_{c} \\
V_{a}
\end{array}\right]=\left[\begin{array}{l}
E_{b} \\
E_{c} \\
E_{a}
\end{array}\right]-\left[\begin{array}{lll}
Z_{s} & Z_{m} & Z_{m} \\
Z_{m} & Z_{3} & Z_{m} \\
Z_{m} & Z_{m} & Z_{s}
\end{array}\right]\left[\begin{array}{c}
I_{b} \\
I_{c} \\
I_{a}
\end{array}\right]
$$

Applying sequence transformation with b - phase as reference phasor,

$$
\left[\begin{array}{l}
V_{30} \\
V_{31} \\
V_{32}
\end{array}\right]=\left[\begin{array}{l}
0 \\
E_{3} \\
0
\end{array}\right]-\left[\begin{array}{lll}
Z_{0} & & \\
& Z_{1} & \\
& & Z_{2}
\end{array}\right]\left[\begin{array}{l}
I_{30} \\
I_{31} \\
I_{32}
\end{array}\right]
$$

Now for a bolted fault on b - phase,

$$
\begin{aligned}
& V_{b}=0 \\
& \text { i.e., } V_{b 0}+V_{b 1}+V_{b 2}=0 \\
& E_{b}-\left(Z_{0}+Z_{1}+Z_{2}\right) I_{b 0}=0 \\
& \text { or } I_{b 0}=\frac{E_{b}}{Z_{0}+Z_{1}+Z_{2}}
\end{aligned}
$$

Thus, to analyze S-L-G fault on b-phase or $a-c$ L-L fault or L-L-G fault we should take b-phase as reference phasor in sequence computation.
10.

Derive the relationship between zero, positive and negative sequence phasors defined with 'b' as reference phasor and corresponding sequence phasors defined with ' a ' as reference phasor.

Ans: With 'a' as reference phasor, the sequence transformation is defined as,

$$
\left[\begin{array}{l}
I_{0}^{a} \\
I_{1}^{a} \\
I_{2}^{a}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & a & a^{2} \\
1 & a^{2} & a
\end{array}\right]\left[\begin{array}{l}
I_{a} \\
I_{b} \\
I_{c}
\end{array}\right]
$$

With 'b' as reference phasor,

$$
\left[\begin{array}{l}
I_{0}^{b} \\
I_{1}^{b} \\
I_{2}^{b}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & a & a^{2} \\
1 & a^{2} & a
\end{array}\right]\left[\begin{array}{l}
I_{b} \\
I_{c} \\
I_{a}
\end{array}\right]
$$

10. Ans:

For zero sequence phasor,

$$
\begin{aligned}
& I_{0}^{a}=\frac{1}{3}\left(I_{a}+I_{b}+I_{c}\right) \\
& I_{0}^{b}=\frac{1}{3}\left(I_{b}+I_{c}+I_{a}\right)
\end{aligned}
$$

Therefore, $I_{0}^{b}=I_{0}^{a}$
Positive sequence phasor,

$$
\begin{aligned}
& I_{1}^{a}=\frac{1}{3}\left(I_{a}+a I_{b}+a^{2} I_{c}\right) \\
& I_{1}^{b}=\frac{1}{3}\left(I_{b}+a I_{c}+a^{2} I_{a}\right) \\
& =\frac{1}{3} \times \frac{a}{a}\left(I_{b}+a I_{c}+a^{2} I_{a}\right) \\
& =\frac{1}{3 a}\left(a I_{b}+a^{2} I_{c}+a^{3} I_{a}\right) \\
& \text { Since } a^{3}=1 \\
& I_{1}^{b}=\frac{1}{3 a}\left(I_{a}+a I_{b}+a^{2} I_{c}\right) \\
& =\frac{1}{a} \times \frac{1}{3}\left(I_{a}+a I_{b}+a^{2} I_{c}\right)=\frac{1}{a} \times I_{1}^{a} \\
& \text { or, } I_{1}^{a}=a I_{1}^{b}
\end{aligned}
$$

i.e., positive sequence current with 'b' as reference phasor lags by 120° with positive sequence current with 'a' as reference phasor.

Negative sequence phasor,

$$
\begin{aligned}
& I_{2}^{a}=\frac{1}{3}\left(I_{a}+a^{2} I_{b}+a I_{c}\right) \\
& I_{2}^{b}=\frac{1}{3}\left(I_{b}+a^{2} I_{c}+a I_{a}\right) \\
& =\frac{1}{3}\left(a^{3} I_{b}+a^{2} I_{c}+a I_{a}\right) \\
& =\frac{1}{3} \times a\left(a^{2} I_{b}+a I_{c}+I_{a}\right) \\
& =a \times \frac{1}{3}\left(I_{a}+a^{2} I_{b}+a I_{c}\right) \\
& =a I_{2}^{a}
\end{aligned}
$$

i.e., negative sequence current with ' b ' as reference phasor leads the negative sequence current with ' a ' as reference phasor, by 120°.

Review Questions

1. Derive the relationship between the transformation matrices T_{a} and T_{c} with ' a ' and ' c ' as reference phasors respectively.
2. Derive the relationship between positive, negative and zero sequence phasors with ' c ' as reference phasor with corresponding sequence phasor with ' b ' as reference phasor.
3.

Out of the four fault types (S-L-G, L-L, L-L-G and 3ϕ) magnitude of which fault current will be the highest and why?
4. Find the symmetrical components if $V_{a}=200\left|30^{\circ}, V_{b}=180\right|-60^{\circ}$ and $V_{c}=150145^{\circ}$.
5. The zero, positive and negative currents of phase 'a' are given by $(5+j 1) A,(7.5-j 1.2) A$ and $(6+j 2) A$ respectively. Find out.
$\overrightarrow{I_{a}}, \overrightarrow{I_{b}}$ and $\overrightarrow{I_{c}}$.
6.

A $3 \phi, 20 \mathrm{MVA}, 11 \mathrm{kV}$ generator with positive, negative and zero sequence impedance $\mathrm{j} 2 \Omega, \mathrm{j} 1.8 \Omega$ and $j 0.6 \Omega$ is
connected to a feeder with sequence impedance $\mathrm{j} 1.5 \Omega, \mathrm{j} 1.5 \Omega$ and $\mathrm{j} 4.5 \Omega$. If a $\mathrm{S}-\mathrm{L}-\mathrm{G}$ fault occurs at the remote end of the feeder, calculate the fault current.
Find out the ratio of fault currents for S-L-G fault to bolted 3ϕ fault of a generator with $Z_{1}=j 1.0 p u$,
7.
$Z_{2}=j 0.8 p u$
and $Z_{0}=j 0.3 p u$. Comment on your findings.
8. In a 3ϕ system, the pu values of positive, negative and zero sequence impedances are given by j 1.5 , j1.25 and j0.6
respectively. The fault impedance is given by $j 1 \Omega$. Determine the fault current for $L-L$ fault and $L-L-G$ fault.

Recap

In this lecture we have learnt the following:

- To calculate sequence components for an unbalanced set of phasors.
- To find out the unbalanced phasors from a given set of sequence components.
- Relationship between sequence transformation matrices with 'b' and 'c' as reference phasors.
- To find out fault currents for different types of faults.
- To calculate the sequence impedance of a feeder.

