DoctorD's Solution to Practice problem 8.4 of the text

Note that the battery is 50 v here, not 100 v - this changes the coefficient of sine in the answer.

Example 2

The circuit shown below has reached steady state at $\mathrm{t}=0$ If the make-before-break switch 50 v moves to position b at $t=0$, calculate $i(t)$ for $t>0$.

The Author is assuming that the voltage on the capacitor is 0 at $t=0$ -

Please refer to lecture or textbook for more detail elaboration.
Answer: $i(t)=\underline{\mathbf{e}^{-2.5 t}[5 \cos 1.6583 t-7.538 \sin 1.6583 t] A}$

1. Find the initial current in the inductor

$$
i(0-)=50 / 10=5 \mathrm{amps} \text { (down) }
$$

2. Determine the differential equation after the switch is thrown

Use a loop equation: (I assume the loop current flows counter clockwise)
$V_{R}+V_{C}+V_{L}=0$

$$
R i+\frac{1}{C} \int i d t+L \frac{d i}{d t}=0
$$

or, after taking the derivative of the equation,

$$
\begin{aligned}
& R \frac{d i}{d t}+\frac{1}{C} i+L \frac{d^{2} i}{d t^{2}}=0 \\
& 5 \frac{d i}{d t}+9 i+\frac{d^{2} i}{d t^{2}}=0
\end{aligned}
$$

3. Let $i=A \varepsilon^{s t}$ and we get the characteristic equation $s^{2}+5 s+9=0$
4. Complete the square
$(s+2.5)^{2}+2.75=0$
$(s+2.5)^{2}=-2.75$
$s+2.5= \pm 1.6583 \mathrm{j}$
$s=-2.5 \pm 1.6583 \mathrm{j} \quad$ We have an underdamped system so the answer is:

$$
i(t)=A_{1} \varepsilon^{-(2.5+1.6583 j) t}+A_{2} \varepsilon^{-(2.5-1.6583 j) t}
$$

5. Find A_{1} and A_{2}

$i(0)=5=A_{1}+A_{2}$, or $A_{2}=5-A_{1}$
but we need another equation so take the derivative of the solution

$$
\frac{d i}{d t}=-(2.5+1.6583 j) A_{1} \varepsilon^{-(2.5+1.6583 j) t}-(2.5-1.94 j) A_{2} \varepsilon^{-(2.5-1.6583 j) t}
$$

but the initial voltage on the inductor is -25 volts (resistor current) and $V_{L=} L^{*} d i / d t$

$$
25=(2.5+1.6583 j) A_{1}+(2.5-1.96583 j) A_{2}
$$

or

$$
5=(0.5+.3317 j) A_{1}+(0.5-.3317 j) A_{2}
$$

Substituting

$$
\begin{aligned}
& 5=(0.5+.3317 j) A_{1}+(0.5-.3317 j) *\left(5-A_{1}\right) \\
& 5=(0.5+.3317 j) A_{1}+(2.5-1.6583 j)-(0.5-.3317 j) * A_{1} \\
& 2.5+1.6583 j=[(0.5+.3317 j)-(0.5-.3317 j)] * A_{1} \\
& 2.5+1.6583 j=[(.3317 j)+(.3317 j)] * A_{1} \\
& A_{1}=\frac{2.5+1.6538 j}{0.6633 j}=2.5-3.75 j \text { and } A_{2}=2.5+3.75 j
\end{aligned}
$$

So the answer is (in exponential form) is

$$
i(t)=(2.5-3.75 j) \varepsilon^{-(2.5+1.6583 j) t}+(2.5+3.75 j) \varepsilon^{-(2.5-1.6583 j) t}
$$

6. To get the sine-cosine form we need to do some complex (this doesn't mean hard, but it can be tedious) algebra.

Collecting terms:

$$
\begin{gathered}
i(t)=\varepsilon^{-2.5 t}\left[(2.5-3.75 j) \varepsilon^{-1.6583 j t}+(2.5+3.75 j) \varepsilon^{+1.6583 j t}\right] \\
i(t)=\varepsilon^{-2.5 t}\left[2.5 \varepsilon^{-1.6583 j t}+2.5 \varepsilon^{+1.6583 j t}+(-3.75 j) \varepsilon^{-1.6583 j t}+(3.75 j) \varepsilon^{+1.6583 j t}\right]
\end{gathered}
$$

or

$$
i(t)=\varepsilon^{-2.5 t}\left[\frac{5 \varepsilon^{1.6583 j t}+5 \varepsilon^{-1.6583 j t}}{2}-\frac{7.5 \varepsilon^{1.6583 j t}-7.5 \varepsilon^{-1.6583 j t}}{2 j}\right]
$$

or
$i(t)=\varepsilon^{-2.5 t}[5 \cos (1.6583 t)-7.5 \sin (1.6583 t)] \mathrm{amps}$

