Professor Paganini

1. Review of integration
(a) We use integration by parts and get

$$
\int_{0}^{\pi} t \cos (t) d t=\underbrace{[t \sin (t)]_{0}^{\pi}}_{0}-\int_{0}^{\pi} \sin (t) d t=\cos (\pi)-\cos (0)=\underline{-2} .
$$

For the next integral we apply integration by parts.

$$
\begin{aligned}
\int_{0}^{\pi} t^{2} \sin (t) d t & =\left[-t^{2} \cos (t)\right]_{0}^{\pi}-2 \int_{0}^{\pi} t(-\cos (t)) d t \\
& =\pi^{2}+2\left[[t \sin (t)]_{0}^{\pi}-\int_{0}^{\pi} \sin (t) d t\right] \\
& =\pi^{2}+2[\cos (\pi)-\cos (0)]=\underline{\pi^{2}-4}
\end{aligned}
$$

(b) With substitution $t-\tau=\sigma, d \tau=-d \sigma$ we get

$$
A(t)=\int_{0}^{t} f(t-\tau) d \tau=\int_{t}^{0} f(\sigma)(-d \sigma)=\int_{0}^{t} f(\sigma) d \sigma .
$$

This can be rewritten with a factor of 1 inserted and partially integrated as

$$
A(t)=\int_{0}^{t} 1 \cdot f(\sigma) d \sigma=[\sigma f(\sigma)]_{0}^{t}-\int_{0}^{t} \sigma f^{\prime}(\sigma) d \sigma
$$

Since the equation $A(t)$ is a function of t only (σ and τ are just integration variables and are exchangeable), we rewrite $A(t)$ as

$$
A(t)=t f(t)-\int_{0}^{t} \tau f^{\prime}(\tau) d \tau
$$

which is what we had to prove.
(c) We integrate over the following four regions separately, considering for the previous region in our results.

* $\mathbf{t}<\mathbf{0}, g(t)=0$.
* $\mathbf{0} \leq \mathbf{t} \leq \mathbf{1}, f(t)=1, \underline{g(t)}=\int_{0}^{t} 1 d \sigma \equiv t$ The previous result is always 0 so nothing has to be added.
* $\mathbf{1} \leq \mathbf{t} \leq \mathbf{2}, f(t)=t-2$,

$$
\underline{g(t)}=g(1)+\int_{1}^{t}(\sigma-2) d \sigma=1+0.5 t^{2}-2 t-0.5+2=0.5 t^{2}-2 t+2.5
$$

Be aware that the result of the previous region at the boundary $t=1, g(1)$, has to be added.

* $\mathbf{2} \leq \mathbf{t}, f(t)=0, \underline{g(t)}=g(2) \equiv 0.5$ The result is the previous result at $t=2$ since nothing is added in region 4.

2. Review of complex numbers
(a) Get real and imaginary parts
(1) One full rotation (2π) of a vector (phasor) in the complex plane does not modify the vector and we get $e^{i \phi}=e^{i(\phi+k 2 \pi)}$ where k is an integer value. The problem can be seen as 6 full rotations plus a three quart rotation. The rotation is clockwise because the sign of the exponent is negative.

$$
e^{-i \frac{27}{2} \pi}=e^{-i\left(6+\frac{3}{4}\right) 2 \pi}=e^{-i \frac{3}{4} 2 \pi}=e^{-i 3 \frac{\pi}{2}}=\underline{i}
$$

(2) With $i=\sqrt{-1}$ and $i^{2}=-1$ the problem can be written as

$$
(i)^{i^{6}}=i^{\left(i^{6}\right)}=i^{\left(\left(i^{2}\right)^{3}\right)}=i^{\left((-1)^{3}\right)}=i^{-1}=\frac{1}{i}=\frac{1 \cdot i}{i \cdot i}=\frac{i}{-1}=-i
$$

Another way to get the solution would use $i=e^{i \frac{\pi}{2}}=e^{-i 3 \frac{\pi}{2}}$ which gives the same result

$$
i^{\left(i^{6}\right)}=i^{i 6 \frac{\pi}{2}}=i^{-1}=\underline{-i}
$$

(b) Get exponential form $|z| e^{i \phi}$

(1) From the figure it can be seen that $\phi=-\frac{\pi}{6}$ and the length of the vector $|z|=2$.

$$
\alpha=\sqrt{3}-i=\underline{2 e^{-i \frac{\pi}{6}}}
$$

(2) From the figure it can be seen that the vector has no real part. Its length is $|z|=1$ and its phase is $\phi=-\frac{\pi}{2}$ which gives

$$
\beta=-i=1 \cdot e^{-i \frac{\pi}{2}}=\underline{e^{-i \frac{\pi}{2}}} .
$$

(c) The complex conjugate of a number can be found in two ways. Either (i) negate its phase $\phi \rightarrow-\phi$, or (ii) negate its imaginary part $\operatorname{Im} \rightarrow-\operatorname{Im}$. We get

$$
\frac{\alpha^{3}}{\bar{\beta}}=\frac{2^{3} e^{-3 i \frac{\pi}{6}}}{e^{i \frac{\pi}{2}}}=8 e^{-3 i \frac{\pi}{6}} e^{-i \frac{\pi}{2}}=8 e^{-i \pi}=\underline{-8} .
$$

(d) The equation can be written as $z^{6}=27$ and $z=27^{\frac{1}{6}}$. In order to get all possible 6 results we use $27=27 e^{i 2 k \pi}$ where k is any integer

$$
z=\left[27 e^{i 2 k \pi}\right]^{\frac{1}{6}}=\sqrt{3} e^{i k \frac{\pi}{3}} .
$$

For $k=0,1,2,3,4,5$ we get the result as a set

$$
z \in\left\{\sqrt{3}, \frac{\sqrt{3}}{2}+i \frac{3}{2},-\frac{\sqrt{3}}{2}+i \frac{3}{2},-\sqrt{3},-\frac{\sqrt{3}}{2}-i \frac{3}{2}, \frac{\sqrt{3}}{2}-i \frac{3}{2}\right\} .
$$

3. Differential Equations

$$
\frac{d y(t)}{d t}+y(t)=\frac{d x(t)}{d t}-2 x(t)
$$

The left and right hand side of the equation can be rewritten as

$$
e^{-t} \frac{d}{d t}\left(e^{t} y(t)\right)=e^{2 t} \frac{d}{d t}\left(e^{-2 t} x(t)\right) .
$$

Multiplying by e^{t} and integrating from 0 to t yields

$$
e^{t} y(t)-e^{0} y(0)=\int_{0}^{t} e^{3 \sigma} \frac{d}{d \sigma}\left(e^{-2 \sigma} x(\sigma)\right) d \sigma
$$

Doing integration by parts for the right hand side using $u(t)=e^{3 t}$ and $v(t)=e^{-2 t} x(t)$ gives

$$
e^{t} y(t)=e^{t} x(t)-3 \int_{0}^{t} e^{3 \sigma} e^{-2 \sigma} x(\sigma) d \sigma
$$

The final result is

$$
y(t)=x(t)-3 \int_{0}^{t} e^{-(t-\sigma)} x(\sigma) d \sigma .
$$

4. System descriptions

$x(t)$ is the input signal and the corresponding output of the system is defined as $y(t)=T[x(t)]$. For proof of system linearity the input signal is written as a linear combination $x(t)=\alpha x_{1}(t)+\beta x_{2}(t)$ and

$$
T\left[\alpha x_{1}(t)+\beta x_{2}(t)\right]=\alpha y_{1}(t)+\beta y_{2}(t)
$$

has to be true. For time invariance

$$
T[x(t-\tau)]=y(t-\tau)
$$

has to be true. Causality means that the output of the system $y(t)$ is not dependent on future values of the input $x(t)$.
(a) $y(t)=x(t+1)-3$

Not linear: $T\left[\alpha x_{1}(t)+\beta x_{2}(t)\right]=\alpha x_{1}(t+1)+\beta x_{2}(t+1)-3 \neq \alpha y_{1}(t)+\beta y_{2}(t)=$ $\alpha\left(x_{1}(t+1)-3\right)+\beta\left(x_{2}(t+1)-3\right)$.
Time invariant: $T[x(t-\tau)]=x(t-\tau+1)-3=y(t-\tau)$.
Not causal: y at time t depends on value of x at time $t+1$, i.e. in the future.
(b) $y(t)=e^{t} x(t)$

Linear: $T\left[\alpha x_{1}(t)+\beta x_{2}(t)\right]=e^{t}\left(\alpha x_{1}(t)+\beta x_{2}(t)\right)=\alpha e^{t} x_{1}(t)+\beta e^{t} x_{2}(t)=$ $\alpha y_{1}(t)+\beta y_{2}(t)$.
Time variant: $T[x(t-\tau)]=e^{t} x(t-\tau) \neq y(t-\tau)=e^{(t-\tau)} x(t-\tau)$.
Causal and memoryless: $y(t)$ depends only on x at current time.
(c) $y(t)=\int_{t}^{\infty} x(\sigma) d \sigma$

Linear: $T\left[\alpha x_{1}(t)+\beta x_{2}(t)\right]=\int_{t}^{\infty}\left(\alpha x_{1}(\sigma)+\beta x_{2}(\sigma)\right) d \sigma=\alpha \int_{t}^{\infty} x_{1}(\sigma) d \sigma+$ $\beta \int_{t}^{\infty} x_{2}(\sigma) d \sigma=\alpha y_{1}(t)+\beta y_{2}(t)=\alpha \int_{t}^{\infty} x_{1}(\sigma) d \sigma+\beta \int_{t}^{\infty} x_{2}(\sigma) d \sigma$.
Time invariant: $T[x(t-\tau)]=\int_{t}^{\infty} x(\sigma-\tau) d \sigma=\int_{(t-\tau)}^{\infty} x(\rho) d \rho=y(t-\tau)$.
Not causal: To find $y(t)$ you need values of x in the entire future (t, ∞).
(d) $y(t)= \begin{cases}x(t) & \text { if } x(t)>0 \\ 0 & \text { else }\end{cases}$

Not linear. To make it simple we just consider one of the linearity conditions which is $T[\alpha x(t)]=\alpha y(t)$. If $x(t)$ is multiplied by a negative α then it can be seen that $x(t)$ switches its sign and $y(t)$ takes a totally different value. Example: $x(t)=3$, which gives $y(t)=3$. Now take $\alpha=-1, T[\alpha x(t)]=0 \neq \alpha y(t)=-3$.
Time invariant: $T[x(t-\tau)]=\left\{\begin{array}{ll}x(t-\tau) & \text { if } x(t-\tau)>0 \\ 0 & \text { else }\end{array}=y(t-\tau)\right.$.
Causal and memoryless: $y(t)$ depends only on x at current time.

