1. (a) $f(t)=1-u(t+2)-u(t)+u(t-1)$.
$\frac{d f}{d t}(t)=-\delta(t+2)-\delta(t)+\delta(t-1)$.

(b) $f(t)=(2 t+2)[u(t+1)-u(t)]+(2 t-2)[u(t)-u(t-1)]$.
$\frac{d f}{d t}(t)=2[u(t+1)-u(t-1)]-4 \delta(t)$.

(c) $f(t)=(t+1)^{2}[u(t+1)-u(t)]+(t-1)^{2}[u(t)-u(t-2)]$.

$$
\frac{d f}{d t}(t)=2(t+1)[u(t+1)-u(t)]+2(t-1)[u(t)-u(t-2)]-\delta(t-2) .
$$

2. (a)

$$
\begin{aligned}
& f(t)=\left(-\frac{t}{2}-\frac{1}{2}\right)[u(t+3)-u(t+1)]+t^{4}[u(t+1)-u(t-1)] \\
&+\left(-\frac{t}{2}+\frac{3}{2}\right)[u(t-1)-u(t-3)] . \\
& \frac{d f}{d t}(t)=\delta(t+3)-\frac{1}{2}[u(t+3)-u(t+1)]+\delta(t+1)+4 t^{3}[u(t+1)-u(t-1)] \\
&+\left(-\frac{1}{2}\right)[u(t-1)-u(t-3)] .
\end{aligned}
$$

(b)

$$
\begin{aligned}
& f(t)=-e^{t} u(-t)+e^{-t} u(t) \\
& \frac{d f}{d t}(t)=-e^{t} u(-t)+2 \delta(t)-e^{-t} u(t)
\end{aligned}
$$

3. (a) $\int_{-\infty}^{\infty} e^{\sin (\pi t)} \delta\left(t+\frac{1}{2}\right) d t=e^{\sin \left(\pi\left(-\frac{1}{2}\right)\right)}=e^{-1}=1 / e$
(b) $\int_{-\infty}^{3} e^{t^{2}-3 t-4} \delta(t-4) d t=0 \quad$ since $4 \notin(-\infty, 3]$.
(c) $\int_{a-}^{\infty} \cos (t) \delta(t-a) d t=\cos (a)$ since the impulse at $t=a$ is included in the domain of integration.
4. (a)

$$
y(t)=T[x(t)]=\int_{-\infty}^{t} \cos (t+\sigma) x(\sigma-1) d \sigma
$$

By definition,

$$
h(t, \tau)=T[\delta(t-\tau)]=\int_{-\infty}^{t} \cos (t+\sigma) \delta(\sigma-\tau-1) d \sigma=\cos (t+\tau+1) u(t-\tau-1)
$$

(b) The system is not time-invariant since $h(t, \tau)$ is not a function of $(t-\tau)$ alone. The system is causal since $h(t, \tau)=0$ for $(t-\tau)<0$.
5. As solved in Homework \# 1,

$$
y(t)=T[x(t)]=x(t)-3 \int_{0-}^{t} e^{-(t-\sigma)} x(\sigma) d \sigma, \quad t \geq 0
$$

This system is linear and time-invariant.
By definition,

$$
h(t)=T[\delta(t)]=\delta(t)-3 \int_{0-}^{t} e^{-(t-\sigma)} \delta(\sigma) d \sigma=\delta(t)-3 e^{-t} u(t) .
$$

