1. (a)

$$
\begin{gathered}
f(t)=u(t-2) e^{2 t}= \begin{cases}0 & \text { if } t<2 \\
e^{-2 t} & \text { if } t>2 .\end{cases} \\
F(s)=\int_{0}^{\infty} u(t-2) e^{2 t} e^{-s t} d t=\int_{2}^{\infty} e^{-(s-2) t} d t \\
=\left[-\frac{e^{(s-2) t}}{(s-2)}\right]_{t=2}^{t \rightarrow \infty}=\frac{e^{4} e^{-2 s}}{(s-2)} \text { with DOC } \operatorname{Re}[s]>2 .
\end{gathered}
$$

(b)

$$
\begin{aligned}
f(t) & =u(t)-u(t-1)+u(t-2)-u(t-3) \\
& = \begin{cases}1 & \text { if } 0<t<1 \text { or } 2<t<3 \\
0 & \text { Otherwise. }\end{cases} \\
F(s) & =\int_{0}^{1} e^{-s t} d t+\int_{2}^{3} e^{-s t} d t \\
& = \begin{cases}{\left[-\frac{e^{-s t}}{s}\right]_{t=0}^{t=1}+\left[-\frac{e^{-s t}}{s}\right]_{t=2}^{t=3}} & \text { if } s \neq 0 \\
2 & \text { if } s=0\end{cases} \\
& = \begin{cases}\left(1-e^{-s}+e^{-2 s}-e^{-3 s}\right) / s & \text { if } s \neq 0 \\
2 & \text { if } s=0\end{cases} \\
& = \begin{cases}\left(1-e^{-s}\right)\left(1+e^{-2 s}\right) / s & \text { if } s \neq 0 \\
2 & \text { if } s=0\end{cases}
\end{aligned}
$$

The DOC is the entire s-plane.
2. (a) $\mathrm{L}\left[e^{-a t} u(t)\right]=\frac{1}{(s+a)}$ with DOC $\operatorname{Re}[s]>\operatorname{Re}[a]$.

$$
\begin{gathered}
f(t)=e^{t} u(t)+e^{-2 t} u(t) \\
F(s)=\frac{1}{s-1}+\frac{1}{s+2}
\end{gathered}
$$

with $\operatorname{DOC} \operatorname{Re}[s]>1$. Uses linearity.
(b)

$$
f(t)=u(t-\pi) e^{(t-\pi)} \cos (t)=-e^{(t-\pi)} \cos (t-\pi) u(t-\pi)
$$

since $\cos (t-\pi)=-\cos (t)$.

$$
\mathbf{L}\left[e^{t} \cos (t) u(t)\right]=\frac{(s-1)}{(s-1)^{2}+1} \quad \text { with DOC } \operatorname{Re}[s]>1
$$

Hence, by property 6 (Delay property),

$$
F(s)=-\frac{(s-1) e^{-s \pi}}{(s-1)^{2}+1} \quad \text { with DOC } \operatorname{Re}[s]>1
$$

(c)

$$
f(t)=\int_{0}^{t} g(\sigma) d \sigma
$$

where $g(t)=t^{2} e^{-t}$. By Property 4,

$$
F(s)=\frac{G(s)}{s}
$$

Now,

$$
\mathbf{L}\left[e^{-t}\right]=\frac{1}{s+1}
$$

with $\operatorname{DOC} \operatorname{Re}[s]>-1$. By Property 5 ,

$$
\mathbf{L}\left[t e^{-t}\right]=-\frac{d}{d s}\left(\frac{1}{s+1}\right)=\frac{1}{(s+1)^{2}}
$$

with DOC $\operatorname{Re}[s]>-1$. Using Property 5 again,

$$
\mathbf{L}\left[t^{2} e^{-t}\right]=-\frac{d}{d s}\left(\frac{1}{(s+1)^{2}}\right)=\frac{2}{(s+1)^{3}}=G(s)
$$

Hence

$$
F(s)=\frac{2}{s(s+1)^{3}}
$$

The DOC is now $\operatorname{Re}[s]>0$ (as also seen from the fact that $f(t)$ is an increasing function of t and hence its integral doesn't exist).
3.

$$
\begin{aligned}
f(t) & =t^{2}[u(t)-u(t-1)]+(t-2)^{2}[u(t-1)-u(t-2)] \\
f^{\prime}(t) & =2 t[u(t)-u(t-1)]+2(t-2)[u(t-1)-u(t-2)] \\
f^{\prime \prime}(t) & =2[u(t)-u(t-1)]-4 \delta(t-1)+2[u(t-1)-u(t-2)] \\
& =2[u(t)-u(t-2)]-4 \delta(t-1)
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{L}\left[f^{\prime \prime}(t)\right] & =2 \mathbf{L}[u(t)]-2 \mathbf{L}[u(t-2)]-4 \mathbf{L}[\delta(t-1)] \\
& =\frac{2}{s}-\frac{2 e^{-2 s}}{s}-4 e^{-s}=\frac{2\left(1-e^{-2 s}\right)}{s}-4 e^{-s}
\end{aligned}
$$

Actually, the above equations are valid only for $s \neq 0$. For $s=0$, using the definition,

$$
\mathbf{L}\left[f^{\prime \prime}(t)\right]=\int_{0}^{\infty}(2[u(t)-u(t-2)]-4 \delta(t-1)) d t=0
$$

Hence, the DOC is the entire complex plane. Now,

$$
\mathbf{L}\left[f^{\prime \prime}(t)\right]=s \mathbf{L}\left[f^{\prime}(t)\right]-f^{\prime}(0-)
$$

Since $f^{\prime}(0-)=0$ (note it's the limit from the left):

$$
\mathbf{L}\left[f^{\prime}(t)\right]=\left(\frac{1}{s}\right) \mathbf{L}\left[f^{\prime \prime}(t)\right]=\frac{2\left(1-e^{-2 s}\right)}{s^{2}}-\frac{4 e^{-s}}{s}, \text { if } s \neq 0
$$

If $s=0$,

$$
\mathrm{L}\left[f^{\prime}(t)\right]=\int_{0}^{\infty} f^{\prime}(t) d t=0
$$

The DOC is again the entire complex plane.
Since $f(0-)=0$,

$$
\begin{aligned}
\mathbf{L}[f(t)]= & \left(\frac{1}{s}\right) \mathbf{L}\left[f^{\prime}(t)\right]=\frac{2\left(1-e^{-2 s}\right)}{s^{3}}-\frac{4 e^{-s}}{s^{2}}, \text { for } s \neq 0 . \\
& \text { For } s=0, \quad \mathbf{L}[f(t)]=\int_{0}^{\infty} f(t) d t=\frac{2}{3}
\end{aligned}
$$

The DOC is again the entire complex plane.
4. We will use the expansion of $F(s)$ into partial fractions to get $\mathrm{f}(\mathrm{t})$.
(a)

$$
\begin{gathered}
F(s)=\frac{s+11}{s^{2}-3 s+4}=\frac{s+11}{(s+1)(s-4)}=\frac{A}{(s+1)}+\frac{B}{(s-4)} \\
A=\left[\frac{s+11}{s-4}\right]_{s=-1}=\frac{-1+11}{-1-4}=-2 ; \quad B=\left[\frac{s+11}{s+1}\right]_{s=4}=\frac{4+11}{4+1}=3 \\
F(s)=\frac{-2}{(s+1)}+\frac{3}{(s-4)} \Longrightarrow f(t)=\left(-2 e^{-t}+3 e^{4 t}\right) u(t)
\end{gathered}
$$

(b)

$$
F(s)=\frac{4 s+10}{s^{3}+6 s^{2}+10 s}=\frac{4 s+10}{s\left[(s+3)^{2}+1\right]}=\frac{A}{s}+\frac{B(s+3)+C}{(s+3)^{2}+1}
$$

We have

$$
4 s+10=A\left[(s+3)^{2}+1\right]+s(B s+3 B+C)
$$

Comparing coefficients of different powers of s on both sides, we get

$$
\begin{aligned}
0 & =A+B \\
4 & =6 A+3 B+C \\
10 & =10 A
\end{aligned}
$$

which are easily solved to give $A=1, B=-1, C=1$. So

$$
F(s)=\frac{1}{s}+\frac{(-1)(s+3)+1}{(s+3)^{2}+1} \Longrightarrow f(t)=u(t)+e^{-3 t}[-\cos (t)+\sin (t)] u(t)
$$

(c)

$$
\begin{gathered}
F(s)=\frac{2 s^{2}-s-5}{(s-1)^{2}(s+3)}=\frac{A}{s-1}+\frac{B}{(s-1)^{2}}+\frac{C}{s+3} \\
B=\left[\frac{2 s^{2}-s-5}{s+3}\right]_{s=1}=-1 ; \quad C=\left[\frac{2 s^{2}-s-5}{(s-1)^{2}}\right]_{s=-3}=1
\end{gathered}
$$

To find A, we let $s=0$ in the partial fraction expansion and get

$$
\begin{gathered}
-\frac{5}{3}=-A+(-1)+\frac{1}{3} \Longrightarrow A=1 \\
F(s)=\frac{1}{s-1}+\frac{(-1)}{(s-1)^{2}}+\frac{1}{s+3} \Longrightarrow f(t)=e^{t} u(t)-t e^{t} u(t)+e^{-3 t} u(t)
\end{gathered}
$$

5.

$$
\begin{aligned}
\mathcal{L}\left[f^{\prime}(t)\right] & =s \mathcal{L}[f(t)]-f\left(0^{-}\right)=s[F(s)] \\
\mathcal{L}\left[f^{\prime \prime}(t)\right] & =s \mathcal{L}\left[f^{\prime}(t)\right]-f^{\prime}\left(0^{-}\right)=s^{2}[F(s)]
\end{aligned}
$$

Taking Laplace transform on both sides of the differential equation,

$$
\begin{aligned}
& s^{2} F(s)+\alpha s F(s)+F(s)=\frac{1}{s} \\
& \Longrightarrow \quad F(s)=\frac{1}{s\left(s^{2}+\alpha s+1\right)}
\end{aligned}
$$

(a) By the Initial Value Theorem,

$$
\lim _{t \rightarrow 0^{+}} f(t)=\lim _{s \rightarrow+\infty}[s F(s)]=\lim _{s \rightarrow+\infty} \frac{1}{\left(s^{2}+\alpha s+1\right)}=0
$$

which is independent of α.
(b) The Final Value Theorem states that

$$
\lim _{t \rightarrow+\infty} f(t)=\lim _{s \rightarrow 0^{+}}[s F(s)]
$$

if the poles of $F(s)$ lie at 0 or strictly on the left half of the complex plane.
The poles of $\mathrm{F}(\mathrm{s})$ are at $s=0$ and at

$$
s_{1,2}=\frac{-\alpha \pm \sqrt{\alpha^{2}-4}}{2} .
$$

$s_{1,2}$ are real for $\alpha \geq 2$ and $\alpha \leq-2$.
For $\alpha \geq 2, \sqrt{\alpha^{2}-4}<\alpha$, so $s_{1,2}<0$.
For $\alpha \leq-2, \sqrt{\alpha^{2}-4}<-\alpha$, so $s_{1,2}>0$.
Hence, the Final value theorem is valid if $\alpha \geq 2$ and not for $\alpha \leq-2$.
$s_{1,2}$ are complex for $-2<\alpha<2$.
For $0<\alpha<2, \operatorname{Re}\left[s_{1,2}\right]=-\frac{\alpha}{2}<0$.
For $-2<\alpha<0, \operatorname{Re}\left[s_{1,2}\right]=-\frac{\alpha}{2}>0$.
For $\alpha=0, s_{1,2}= \pm i$. Hence, the Final value theorem is valid for $0<\alpha<2$ and not for $-2<\alpha \leq 0$.

So, if $\alpha>0$, the Final Value Theorem is valid, and

$$
\lim _{t \rightarrow+\infty} f(t)=\lim _{s \rightarrow 0^{+}} \frac{1}{\left(s^{2}+\alpha s+1\right)}=1
$$

If $\alpha<0$, then the poles satisfy $\operatorname{Re}\left[s_{1,2}\right]>0$. Using the partial fraction expansion

$$
F(s)=\frac{A}{s}+\frac{B}{s-s_{1}}+\frac{C}{s-s_{2}}
$$

we see that $f(t)$ will be of the form $f(t)=A u(t)+B e^{s_{1} t} u(t)+C e^{s_{2} t} u(t)$. The magnitude of the complex exponential is $e^{R e\left[s_{i}\right] t}$ and goes to infinity as $t \rightarrow+\infty$.
If $\alpha=0$, then $f(t)$ contains $\sin (t)$ or $\cos (t)$, and does not have a limit as $t \rightarrow+\infty$.
(c) If $\alpha=1$,

$$
F(s)=\frac{1}{s\left(s^{2}+s+1\right)}=\frac{1}{s\left[\left(s+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}\right]}=\frac{A}{s}+\frac{M s+N}{s^{2}+s+1} .
$$

Multiply by s, evaluate at $s=0: \Longrightarrow A=1$.
Multiply by s, limit as $s \rightarrow \infty: \Longrightarrow 0=A+M \Longrightarrow M=-1$.
Evaluate at $s=-1: \Longrightarrow-1=-A-M+N \Longrightarrow N=-1$.
Use formula given in class ($\alpha=-\frac{1}{2}, \beta=\frac{\sqrt{3}}{2}, M=N=-1$), to get

$$
F(s)=\frac{1}{s}+\frac{-s-1}{\left(s+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} \Longrightarrow f(t)=u(t)+e^{-\frac{t}{2}}\left[-\cos \left(\frac{\sqrt{3}}{2} t\right)-\frac{1}{\sqrt{3}} \sin \left(\frac{\sqrt{3}}{2} t\right)\right] u(t)
$$

