1. (a) We found in HW \#5 that $\omega_{0}=\frac{\pi}{2}$ and the Fourier coefficients

$$
F_{n}= \begin{cases}0 & n \text { odd, } n \neq \pm 1 \\ \frac{-2 n i}{\pi\left(n^{2}-1\right)} & n \text { even }\end{cases}
$$

and

$$
F_{1}=F_{-1}=\frac{1}{2}
$$

The sine-cosine Fourier series representation of $f(t)$ is

$$
\begin{gathered}
f(t)=a_{0}+2 \sum_{n=1}^{\infty}\left(a_{n} \cos \left(n \omega_{0} t\right)+b_{n} \sin \left(n \omega_{0} t\right)\right) \\
a_{0}=F_{0}=0
\end{gathered} a_{n}=\operatorname{Re}\left[F_{n}\right]=\left\{\begin{array}{ll}
\frac{1}{2} & n=1 \\
0 & \text { otherwise }
\end{array}\right\} \begin{array}{ll}
0 & n \text { odd } \\
b_{n}=-\operatorname{Im}\left[F_{n}\right]= \begin{cases}2 n & n \text { even }\end{cases}
\end{array}
$$

Hence the sine-cosine Fourier series representation of $f(t)$ is

$$
\begin{aligned}
f(t) & =\cos \left(\frac{\pi t}{2}\right)+\sum_{\substack{n=2 \\
n \text { even }}}^{\infty} \frac{4 n}{\pi\left(n^{2}-1\right)} \sin \left(n\left(\frac{\pi}{2}\right) t\right) \\
& =\cos \left(\frac{\pi t}{2}\right)+\sum_{k=1}^{\infty} \frac{8 k}{\pi\left(4 k^{2}-1\right)} \sin (k \pi t)
\end{aligned}
$$

(b) By Parseval's theorem,

$$
\begin{aligned}
\sum_{n=-\infty}^{\infty}\left|F_{n}\right|^{2} & =\frac{1}{4} \int_{0}^{2}\left(2 \cos \left(\frac{\pi t}{2}\right)\right)^{2} d t=\left(\frac{1}{2}\right)\left[\frac{1}{4} \int_{0}^{4}\left(2 \cos \left(\frac{\pi t}{2}\right)\right)^{2} d t\right] \\
& =\left(\frac{1}{2}\right)\left(\frac{2^{2}}{2}\right)=1
\end{aligned}
$$

where we used the fact that $\frac{1}{T} \int_{0}^{T}\left(V_{0} \cos \left(\frac{2 \pi t}{T}\right)\right)^{2} d t=\frac{V_{0}^{2}}{2}$
2. (a)

$$
\begin{gathered}
y(t)=\sum_{n=-\infty}^{\infty} Y_{n} e^{i n \frac{2 \pi}{T} t} \\
Y_{n}=\frac{1}{T} \int_{0}^{T} y(t) e^{-i n \frac{2 \pi}{T} t} d t=\frac{1}{T} \int_{0}^{h T} V_{0} e^{-i n \frac{2 \pi}{T} t} d t \\
= \begin{cases}i V_{0}\left(\frac{e^{-i 2 \pi n h}-1}{2 \pi n}\right) & n \neq 0 \\
h V_{0} & n=0\end{cases}
\end{gathered}
$$

(b)

$$
\begin{aligned}
P(y) & =P_{A C}(y)+P_{D C}(y)=\frac{1}{T} \int_{0}^{T}|y(t)|^{2} d t=\frac{1}{T} \int_{0}^{h T} V_{0}^{2} d t \\
& =h V_{0}^{2} \\
P_{D C}(y) & =\left|Y_{0}\right|^{2}=h^{2} V_{0}^{2}
\end{aligned}
$$

Hence

$$
\frac{P_{A C}(y)}{P_{D C}(y)}=\frac{P(y)-P_{A C}(y)}{P_{D C}(y)}=\frac{h V_{0}^{2}-h^{2} V_{0}^{2}}{h^{2} V_{0}^{2}}=\frac{1-h}{h}
$$

(c) If

$$
z(t)=\sum_{n=-\infty}^{\infty} Z_{n} e^{i n \frac{2 \pi}{T} t}
$$

Then the DC term is

$$
Z_{0}=H(0) . Y_{0}=Y_{0}=h V_{0}
$$

(d)

$$
\begin{gathered}
Z_{n}=H\left(i n \frac{2 \pi}{T}\right) Y_{n}=\frac{1}{1+i n\left(\frac{2 \pi}{T}\right)(3 T)} Y_{n}=\frac{1}{1+i(6 n \pi)} Y_{n} \\
P_{A C}(z)=2 \sum_{n=1}^{\infty}\left|Z_{n}\right|^{2}=2 \sum_{n=1}^{\infty} \frac{1}{1+36 \pi^{2} n^{2}}\left|Y_{n}\right|^{2}
\end{gathered}
$$

Since $\forall n$,

$$
\begin{gathered}
\frac{1}{1+36 \pi^{2} n^{2}} \leq \frac{1}{1+36 \pi^{2}} \leq \frac{1}{356} \\
P_{A C}(z) \leq \frac{1}{1+36 \pi^{2}}\left(2 \sum_{n=1}^{\infty}\left|Y_{n}\right|^{2}\right) \leq \frac{1}{356} P_{A C}(y)
\end{gathered}
$$

Hence

$$
\frac{P_{A C}(z)}{P_{D C}(z)} \leq \frac{1}{356} \frac{P_{A C}(y)}{P_{D C}(y)}=\frac{1}{356}\left(\frac{1-\frac{1}{2}}{\frac{1}{2}}\right)=\frac{1}{356}
$$

We can get a tighter bound by noting that for $\tau=3 T$, and $n \neq 0$

$$
Y_{n}= \begin{cases}0 & n \text { even } \\ \frac{V_{0}}{i n \pi} & n \text { odd }\end{cases}
$$

Hence

$$
\begin{aligned}
P_{A C}(z)= & 2 \sum_{n \text { odd }, n>0} \frac{1}{1+36 \pi^{2} n^{2}} \frac{V_{0}^{2}}{n^{2} \pi^{2}} \\
\leq & 2 \sum_{n \text { odd }, n>0} \frac{1}{36 \pi^{2} n^{2}} \frac{V_{0}^{2}}{n^{2} \pi^{2}} \\
& =\frac{V_{0}^{2}}{18 \pi^{4}} \sum_{n \text { odd }, n>0} \frac{1}{n^{4}}=\frac{V_{0}^{2}}{1728} .
\end{aligned}
$$

using the fact that

$$
\begin{align*}
& \sum_{n \text { odd }, n>0} \frac{1}{n^{4}}=\frac{\pi^{4}}{96} . \tag{1}\\
\Longrightarrow \quad & \frac{P_{A C}(z)}{P_{D C}(z)} \leq \frac{\frac{V_{0}^{2}}{1728}}{\frac{V_{0}^{2}}{4}}=\frac{1}{432}
\end{align*}
$$

Of course, we didn't expect you to know the sum (1), so the looser bound gets full credit. But we remark it is not difficult to show (1) by a Fourier argument.
3. One way is to use a trigonometry identity: $\sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right)=\frac{\cos \left(\theta_{1}-\theta_{2}\right)-\cos \left(\theta_{1}+\theta_{2}\right)}{2}$, and get

$$
f(t)=\sin (t) \sin (2 t)=\frac{\cos (t-2 t)-\cos (t+2 t)}{2}=\frac{1}{2} \cos (t)-\frac{1}{2} \cos (3 t)
$$

Thus the sine-cosine Fourier series for $f(t)$ has just two terms. Using $\cos (t)=\frac{e^{i t}+e^{-i t}}{2}$ and $\cos (3 t)=\frac{e^{i 3 t}+e^{-i 3 t}}{2}$, we get the exponential Fourier series to be

$$
\begin{equation*}
f(t)=-\frac{1}{4} e^{-i 3 t}+\frac{1}{4} e^{-i t}+\frac{1}{4} e^{i t}-\frac{1}{4} e^{i 3 t} . \tag{2}
\end{equation*}
$$

But you don't need to remember these trigonometry formulas: you can instead use the Euler equations (these you must remember!)

$$
\sin (t)=\frac{e^{i t}-e^{-i t}}{2 i}, \quad \sin (2 t)=\frac{e^{i 2 t}-e^{-i 2 t}}{2 i}
$$

and multiply them to get directly (2), and from there the sine-cosine expansion.
If $f(t)$ is approximated using only the first harmonic term $\frac{1}{2} \cos (t)$, the error is the third harmonic term $\frac{1}{2} \cos (3 t)$ Hence, the mean-square-error in the approximation would be

$$
\overline{\epsilon_{1}^{2}}=\frac{\left(\frac{1}{2}\right)^{2}}{2}=\frac{1}{8}
$$

Alternatively,

$$
\overline{\epsilon_{1}^{2}}=\sum_{|n|>1}\left|F_{n}\right|^{2}=\left|F_{-3}\right|^{2}+\left|F_{3}\right|^{2}=\left(\frac{1}{4}\right)^{2}+\left(\frac{1}{4}\right)^{2}=\frac{1}{8} .
$$

