I nitroduction to Maitlab: Circulit Analysis

I nitroduction

- MatLab can be a useful tool in many applications.
- We will learn how to analyze a simple electrical circuit, set the problem up as N equations in N unknowns, and transform the equations into a matrix formulation that MatLab can solve.

Topics

- Electrical Devices.
- Kirchhoffis Laws.
- Analyzing a Resistor Network
- Inverting Matrices.
- A MatLab Solution.

Electrical Devices

- Voltage and Current.
- Sources.
- Resistors: Ohms Law.
- Capacitors: Charge Storage
- Inductors: Current Storage.

Voltage and Cursent

- Voltage - the force that pushes electrical current around a circuit. (Sometimes called "potentia]" as in potential energy.)
- Current - the flow of electrical charge through a conductor. (Electrons flow backwards)
- Conductor - the "pipe" through which an electrical current flows.

Sources

- Voltage Source: Fixed Voltage waveform
- Direct Current: A battery
- Alternating Current: A generator (sine waves)
- Current Source: Fixed current waveform (AC or DC)

Resistors

- A constriction in the flow of current
- Anallogous to a small orifice in a water pipe, it takes a high pressure (voltage) to force a flow of water (current) through the resistance
- Ohm's Law $\mathrm{V}=\mathrm{J} * \mathrm{R}$

Resistor Color Codes

- First two stripes: Digits
- Third stripe: Power of 10
- Fourth stripe: Precision
(none - 20\%, silver - 10\%, gold - 5\%)
0 - Black
5 - Green
1 - Brown
6 - Blue
2 - Red
3 - Orange
4 - Yellow
7 - Violet
8 - Gray
9 - White

Capacitors

- A charge storage device
- Analogous to a water tank that is filled from the bottom. As the water level rises (charge divided by the cross sectional area capacitance), the pressure (voltage) rises.
- Capacitor Law $\mathrm{V}=\mathrm{Q} / \mathrm{C}$

I nductors

- A current storage device
- Analogous to the inertial effect of the flow of a fluid. The inductance is the mass that is moving.
- Inductor Law
$\mathrm{V}=\mathrm{L} * \mathrm{dl} / \mathrm{dt}$ ($\mathrm{dl} / \mathrm{dt}$ is the "rate of change" in the current. This is analogous to velocity.)

Kirchhofif's Laws

- Conservation of Current: The sum of all currents into a "node" equals zero.
- Loop Law:

The sum of all voltages around a loop equals zero.

A Resisior Netyyork

Introduction to MatLab: Circuit Analysis

Measurements

- Multimeter (Analog and Digjital)
- Voltage - measured relative to a reference, usually electrical ground.
- Resistance - meter puts a small current through the resistor and uses Ohm's law.
- Current - careful, the meter can be destroyed by an over-cursent.

Loop Equations

- Establish Independent Loop Currents
- Write Equation for Each Loop
- Determine voltages in terms of the loop currents.
- Sum to zero
(note: Alternative, use a set of "Node" equations)

Our Circuit - First Step

$$
9 v=15 k^{*}\left(I_{1}-J_{2}\right)+1 k^{*}\left(J_{1}-J_{3}\right)
$$

$0=10 \mathrm{~K}^{*} \mathrm{I}_{2}+1 \mathrm{~K}^{*}\left(\mathrm{I}_{2^{-}} \mathrm{J}_{1}\right)+1 \mathrm{~K}^{*}\left(\mathrm{I}_{2^{-}} \mathrm{I}_{3}\right)$
$0=1 k^{*}\left(I_{3^{-}} J_{1}\right)+15 k^{*}\left(I_{3^{-}} J_{2}\right)+3.3 k^{*} \|_{3}$

Our Circuit - Collecting Terms

$9 v=16 k^{*}\left\|_{1}-15 k^{*}\right\|_{2}-1 k^{*} \|_{3}$

$0=-15 \mathrm{~K}^{*}\left\|_{1}+40 \mathrm{~K}^{*}\right\|_{2}-15 \mathrm{~K}^{*} \boldsymbol{N}_{3}$
$0=-1 k^{*} \operatorname{l}_{1}-15 \mathrm{~K}^{*} \|_{2}+19.3 \mathrm{~K}^{*} \operatorname{l}_{3}$

Vectorizing N Equations

- Rewrite, ordering variables
- Formulate equivalent as an input column vector equals a coefficient matrix times an "unknowns" vector
- Solution: pre-multiply both sides by the inverse of the coefficient matrix.

Our Circuitit - Vector Equation

$9 v$
0

0 \begin{tabular}{rrr|r}
$16 k$ \& $-15 k$ \& $-1 k$

$-15 k$ \& $40 k$ \& $-15 k$

$-1 k$ \& $-15 k$ \& $19.3 k$

$*$

I_{1}

I_{2}

I_{3}
\end{tabular}

Inverting Matrices

- The inverse of a square matrix is that matrix which, when multiplied by the original matrix yields the I dentity matrix
- In MatLab use "inv()".

Our Circuit - Inverse Matrix

I_{1}
I_{2}
I_{3}
:---
0.0777
0.0676
0

Our Circuit - Cuirents

I nitro To PSpice

- Originally firom Microsim, now part of OrCad.
- Demo/student CDROM is free at wwww, orcad. com, current version is 9.2, Limited to small circuits and part library.
- Graphical simulation of circuits and automated Printed Circuit board layout.

I nitroduction to MajLab: Circuit Analysis

