
Chapter 3

Introduction to MATLAB Programming

Copyright © 2013 Elsevier Inc. All rights reserved 1

Algorithms
 An algorithm is the sequence of steps needed to

solve a problem

 Top-down design approach to programming: break
a solution into steps, then further refine each one

 Generic algorithm for many programs:
1. Get the input

2. Calculate result(s)

3. Display the result(s)

 A modular program would consist of functions that
implement each step

Copyright © 2013 Elsevier Inc. All rights reserved 2

Algorithms and Control Structures

There are three categories of algorithmic operations:

Sequential operations: Instructions executed in order.

Conditional operations: Control structures that first ask a

question to be answered with a true/false answer and then

select the next instruction based on the answer.

Iterative operations (loops): Control structures that repeat

the execution of a block of instructions.

4-2

Advantages of structured programming

1. Structured programs are easier to write because the
programmer can study the overall problem first and then
deal with the details later.

2. Modules (functions) written for one application can be
used for other applications (this is called reusable code).

3. Structured programs are easier to debug because each
module is designed to perform just one task and thus it
can be tested separately from the other modules.

4-4

Advantages of structured programming (continued)

4. Structured programming is effective in a teamwork
environment because several people can work on a
common program, each person developing one or more
modules.

5. Structured programs are easier to understand and modify,
especially if meaningful names are chosen for the
modules and if the documentation clearly identifies the
module’s task.

4-5

Scripts
 Scripts are files in MATLAB that contain a sequence of

MATLAB instructions, implementing an algorithm

 Scripts are interpreted, and are stored in M-files (files
with the extension .m)

 To create a script, click on “New Script” under the
HOME tab; this opens the Editor

 Once a script has been created and saved, it is
executed by entering its name at the prompt

 the type command can be used to display a script in
the Command Window

Copyright © 2013 Elsevier Inc. All rights reserved 6

Documentation
 Scripts should always be documented using

comments

 Comments are used to describe what the script does,
and how it accomplishes its task

 Comments are ignored by MATLAB

 Comments are anything from a % to the end of that
line; longer comment blocks are contained in between
%{ and %}

 In particular, the first comment line in a script is called
the “H1 line”; it is what is displayed with help

 Proper selection of variable names to reflect the
quantities they represent.

Copyright © 2013 Elsevier Inc. All rights reserved 7

Steps for developing a computer solution:

1. State the problem concisely.

2. Specify the data to be used by the program. This is the
“input.”

3. Specify the information to be generated by the program.
This is the “output.”

4. Work through the solution steps by hand or with a
calculator; use a simpler set of data if necessary.

Steps for developing a computer solution (continued)

5. Write and run the program.

6. Check the output of the program with your hand solution.

7. Run the program with your input data and perform a
reality check on the output.

8. If you will use the program as a general tool in the future,
test it by running it for a range of reasonable data values;
perform a reality check on the results.

4-7

Finding Bugs

Debugging a program is the process of finding and

removing the “bugs,” or errors, in a program. Such

errors usually fall into one of the following categories.

1. Syntax errors such as omitting a parenthesis or

comma, or spelling a command name incorrectly.

MATLAB usually detects the more obvious errors and

displays a message describing the error and its

location.

2. Errors due to an incorrect mathematical procedure.

These are called runtime errors. They do not

necessarily occur every time the program is executed;

their occurrence often depends on the particular input

data. A common example is division by zero.
4-14

To locate a runtime error, try the following:

1. Always test your program with a simple version of the

problem, whose answers can be checked by hand

calculations.

2. Display any intermediate calculations by removing

semicolons at the end of statements.

4-15

Input
 The input function does two things: prompts the

user, and reads in a value

 General form for reading in a number:
variablename = input(‘prompt string’)

 General form for reading a character or string:
variablename = input(‘prompt string’, ‘s’)

 Must have separate input functions for every value to
be read in

Copyright © 2013 Elsevier Inc. All rights reserved 12

Output
 There are two basic output functions:

 disp, which is a quick way to display things
 fprintf, which allows formatting

 The fprintf function uses format strings which include place
holders; these have conversion characters:

%d integers
%f floats (real numbers)
%c single characters
%s strings

 Use %#x where # is an integer and x is the conversion character
to specify the field width of #

 %#.#x specifies a field width and the number of decimal places
 %.#x specifies just the number of decimal places (or characters

in a string); the field width will be expanded as necessary

Copyright © 2013 Elsevier Inc. All rights reserved 13

Formatting Output
 Other formatting:

 \n newline character

 \t tab character

 left justify with ‘-’ e.g. %-5d

 to print one slash: \\

 to print one single quote: ‘‘ (two single quotes)

 Printing vectors and matrices: usually easier with disp

Copyright © 2013 Elsevier Inc. All rights reserved 14

Examples of fprintf
 Expressions after the format string fill in for the place

holders, in sequence
>> fprintf('The numbers are %4d and %.1f\n', 3, 24.59)

The numbers are 3 and 24.6

 It is not the case that every fprintf statement prints a
separate line; lines are controlled by printing \n; e.g.
from a script:

fprintf('Hello and')

fprintf(' how \n\n are you?\n')

 would print:
Hello and how

are you?

>>

Copyright © 2013 Elsevier Inc. All rights reserved 15

Scripts with I/O
 Although input and output functions are valid in the

Command Window, they make most sense in scripts (and/or
functions)

 General outline of a script with I/O:

1. Prompt the user for the input (suppress the output with ;)

2. Calculate values based on the input (suppress the output)

3. Print everything in a formatted way using fprintf (Normally, print
both the input and the calculated values)

 Use semicolons throughout so that you control exactly what
the execution of the script looks like

Copyright © 2013 Elsevier Inc. All rights reserved 16

Script with I/O Example
 The target heart rate (THR) for a relatively active

person is given by

THR = (220-A) * 0.6 where A is the person’s age in years

 We want a script that will prompt for the age, then
calculate and print the THR. Executing the script
would look like this:
>> thrscript

Please enter your age in years: 33

For a person 33 years old,

the target heart rate is 112.2.

>>

Copyright © 2013 Elsevier Inc. All rights reserved 17

Example Solution

% Calculates a person's target heart rate

age = input('Please enter your age in years: ');

thr = (220-age) * 0.6;

fprintf('For a person %d years old,\n', age)

fprintf('the target heart rate is %.1f.\n', thr)

thrscript.m

Note that the output is suppressed from both assignment statements. The
format of the output is controlled by the fprintf statements.

Copyright © 2013 Elsevier Inc. All rights reserved 18

Simple Plots
 Simple plots of data points can be created using plot

 To start, create variables to store the data (can store one or more point
but must be the same length); vectors named x and y would be
common – or, if x is to be 1,2,3,etc. it can be omitted

plot(x,y) or just plot(y)

 The default is that the individual points are plotted with straight line
segments between them, but other options can be specified in an
additional argument which is a string

 options can include color (e.g. ‘b’ for blue, ‘g’ for greeen, ‘k’ for
black, ‘r’ for red, etc.)

 can include plot symbols or markers (e.g. ‘o’ for circle, ‘+’, ‘*’)

 can also include line types (e.g. ‘--’ for dashed)

 For example, plot(x,y, ‘g*--’)

Copyright © 2013 Elsevier Inc. All rights reserved 19

Labeling the Plot
 By default, there are no labels on the axes or title on the plot

 Pass the desired strings to these functions:
 xlabel(‘string’)

 ylabel(‘string’)

 title(‘string’)

 The axes are created by default by using the minimum and
maximum values in the x and y data vectors. To specify different
ranges for the axes, use the axis function:
 axis([xmin xmax ymin ymax])

Copyright © 2013 Elsevier Inc. All rights reserved 20

Other Plot Functions
 clf clears the figure window

 figure creates a new figure window (can # e.g.
figure(2))

 hold is a toggle; keeps the current graph in the figure
window

 legend displays strings in a legend

 grid displays grid lines

 bar bar chart

 Note: make sure to use enough points to get a
“smooth” graph

Copyright © 2013 Elsevier Inc. All rights reserved 21

File I/O: load and save
 There are 3 modes or operations on files:

 read from

 write to (assumes from the beginning)

 append to (writing to, but starting at the end)

 There are simple file I/O commands for saving a
matrix to a file and also reading from a file into a
matrix: save and load

 If what is desired is to read or write something other
than a matrix, lower level file I/O functions must be
used (covered in Chapter 9)

Copyright © 2013 Elsevier Inc. All rights reserved 22

load and save
 To read from a file into a matrix variable:

load filename.ext

 Note: this will create a matrix variable named “filename” (same as the name
of the file but not including the extension on the file name)

 This can only be used if the file has the same number of values on every line
in the file; every line is read into a row in the matrix variable

 To write the contents of a matrix variable to a file:
save filename matrixvariablename –ascii

 To append the contents of a matrix variable to an existing file:
save filename matrixvariablename –ascii -append

Copyright © 2013 Elsevier Inc. All rights reserved 23

Example using load and plot

 A file ‘objweights.dat’ stores weights of some objects
all in one line, e.g. 33.5 34.42 35.9 35.1 34.99 34

 We want a script that will read from this file, round the
weights, and plot the rounded weights with red *’s:

1 2 3 4 5 6
34

34.5

35

35.5

36

Object #

W
e
ig

h
t

Practice Plot

Copyright © 2013 Elsevier Inc. All rights reserved 24

Example Solution

load objweights.dat

y = round(objweights);

x = 1:length(y); % Not necessary

plot(x,y, 'r*')

xlabel('Object #')

ylabel('Weight')

title('Practice Plot')

Note that load creates a row vector variable named objweights

Copyright © 2013 Elsevier Inc. All rights reserved 25

User-Defined Functions
 User-Defined Functions are functions that you write

 There are several kinds; for now we will focus on the
kind of function that calculates and returns one value

 You write what is called the function definition (which
is saved in an M-file)

 Then, using the function works just like using a built-
in function: you call it by giving the function name
and passing argument(s) to it in parentheses; that
sends control to the function which uses the
argument(s) to calculate the result – which is then
returned

Copyright © 2013 Elsevier Inc. All rights reserved 26

General Form of Function Definition
 The function definition would be in a file fnname.m:

function outarg = fnname(input arguments)

% Block comment

Statements here; eventually:

outarg = some value;

end

 The definition includes:

 the function header (the first line)

 the function body (everything else)
Copyright © 2013 Elsevier Inc. All rights reserved 27

Function header
 The header of the function includes several things:

function outarg = fnname(input arguments)

 The header always starts with the reserved word
“function”

 Next is the name of an output argument, followed by
the assignment operator

 The function name “fnname” should be the same as
the name of the m-file in which this is stored

 The input arguments correspond one-to-one with the
values that are passed to the function when called

Copyright © 2013 Elsevier Inc. All rights reserved 28

Function Example
 For example, a function that calculates and returns the area of a circle

 There would be one input argument: the radius

 There would be one output argument: the area

 In an M-file called calcarea.m:

function area = calcarea(rad)

% This function calculates the area of a circle

area = pi * rad * rad;

end

 Function name same as the M-file name

 Putting a value in the output argument is how the function returns the value;
in this case, with an assignment statement (Note: suppress the output)

 The names of the input and output arguments follow the same rules as
variables, and should be mnemonic

Copyright © 2013 Elsevier Inc. All rights reserved 29

Calling the Function
 This function could be called in several ways:

 >> calcarea(4)

 This would store the result in the default variable ans

 >> myarea = calcarea(9)

 This would store the result in the variable myarea

 A variable with the same name as the output argument could
also be used

 >> disp(calcarea(5))

 This would display the result, but it would not be stored for
later use

Copyright © 2013 Elsevier Inc. All rights reserved 30

Passing arrays to functions
 Because the * operator was used instead of .*,

area = pi * rad * rad;

arrays could not be passed to this function as it is

 To fix that, change to the array multiplication operator
.*

function area = calcarea(rad)

% This function calculates the area of a circle

area = pi * rad .* rad;

end

 Now a vector of radii could be passed to the input
argument rad

Copyright © 2013 Elsevier Inc. All rights reserved 31

Notes
 You can pass multiple input arguments to a function

 Variables that are used within a function (for example,
for intermediate calculations) are called local variables

Copyright © 2013 Elsevier Inc. All rights reserved 32

MATLAB Programs
 Note: a function that returns a value does NOT

normally also print the value

 A function can be called from a script

 This combination of a script (stored in an M-file) and
the function(s) (also stored in M-files) that it calls is a
program

Copyright © 2013 Elsevier Inc. All rights reserved 33

General Form of Simple Program

 Get input

 Call fn to calculate
result

 Print result

function out = fn(in)

out = value based on in;

end

script.m

fn.m

Copyright © 2013 Elsevier Inc. All rights reserved 34

Example Program
 The volume of a hollow sphere is given by

4/3 Π (Ro
3 – Ri

3) where Ro is the outer radius and Ri is the
inner radius

 We want a script that will prompt the user for the radii,
call a function that will calculate the volume, and print
the result.

 Also, we will write the function!

Copyright © 2013 Elsevier Inc. All rights reserved 35

Example Solution
% This script calculates the volume of a hollow sphere

inner = input('Enter the inner radius: ');
outer = input('Enter the outer radius: ');

volume = vol_hol_sphere(inner, outer);

fprintf('The volume is %.2f\n', volume)

function hollvol = vol_hol_sphere(inner, outer)

% Calculates the volume of a hollow sphere

hollvol = 4/3 * pi * (outer^3 - inner^3);

end

vol_hol_sphere.m

Copyright © 2013 Elsevier Inc. All rights reserved 36

Introduction to scope
 The scope of variables is where they are valid

 The Command Window uses a workspace called the
base workspace

 Scripts also use the base workspace

 This means that variables created in the Command
Window can be used in a script and vice versa (this is a
bad idea, however)

 Functions have their own workspaces – so local
variables in functions, input arguments, and output
arguments only exist while the function is executing

Copyright © 2013 Elsevier Inc. All rights reserved 37

Commands and Functions
 Commands (such as format, type, load, save) are

shortcut versions of function calls

 The command form can be used if all of the arguments
that are passed to the function are strings, and the
function is not returning any values.

 So,
fnname string

 and
fnname(‘string’)

 are equivalent

Copyright © 2013 Elsevier Inc. All rights reserved 38

Common Pitfalls
 Spelling a variable name different ways in different

places in a script or function.

 Forgetting to add the second ‘s’ argument to the input
function when character input is desired.

 Not using the correct conversion character when
printing.

 Confusing fprintf and disp. Remember that only
fprintf can format.

 Not realizing that load will create a variable with the
same name as the file.

Copyright © 2013 Elsevier Inc. All rights reserved 39

Programming Style Guidelines
 Use comments to document scripts and functions

 Use mnemonic identifier names (names that make sense, e.g. radius
instead of xyz) for variable names and for file names

 Put a newline character at the end of every string printed by fprintf so
that the next output or the prompt appears on the line below.

 Put informative labels on the x and y axes and a title on all plots.

 Keep functions short – typically no longer than one page in length.

 Suppress the output from all assignment statements in functions and
scripts.

 Functions that return a value do not normally print the value; it should
simply be returned by the function.

 Use the array operators .*, ./, .\, and .^ in functions so that the input
arguments can be arrays and not just scalars.

Copyright © 2013 Elsevier Inc. All rights reserved 40

