
1

Roots of Equations

Open Methods

Newton-Raphson

Nonlinear Equation

Solvers

Bracketing

Bisection

False Position

(Regula-Falsi)

Graphical Open Methods

Newton Raphson

Secant

All Iterative

2

Open Methods

• Open methods differ from bracketing methods, in

that open methods require only a single starting

value (NR).

• Used in computer programs today to solve

extremely complicated equations

• Open methods may diverge as the computation

progresses, but when they do converge, they

usually do so much faster than bracketing methods.

3

Graphical Comparison of Methods

a) Bracketing method

b) Diverging open method

c) Converging open method - note speed!
4

Newton-Raphson Method

)(xf

)f(x
 - = xx

i

i
ii

+1

 f(x)

 f(xi)

 f(xi-1)

xi+2 xi+1 xi
 X

() ii xfx ,

Figure 1 Geometrical illustration of the Newton-Raphson method.

5

Derivation

 f(x)

 f(xi)

xi+1 xi

 X

 B

 C A

)(

)(
1

i

i
ii

xf

xf
xx

−=+

1

)(
)('

+−
=

ii

i
i

xx

xf
xf

AC

AB
=)tan(

Figure 2 Derivation of the Newton-Raphson method.

6

Algorithm for Newton-
Raphson Method

7

Step 1

)(xf Evaluate symbolically.

8

Step 2

()
()i

i
ii

xf

xf
 - = xx

+1

Use an initial guess of the root, , to estimate the new
value of the root, , as

ix

1+ix

9

Step 3

010
1

1
x

- xx
 =

i

ii
a

+

+

Find the absolute relative approximate error asa

10

Step 4

Compare the absolute relative approximate error
with the pre-specified relative error tolerance .

Also, check if the number of iterations has exceeded
the maximum number of iterations allowed. If so,
one needs to terminate the algorithm and notify the
user.

s

Is ?

Yes

No

Go to Step 2 using new
estimate of the root.

Stop the algorithm

sa

11

Example 1

You are working for ‘DOWN THE TOILET COMPANY’ that
makes floats for ABC commodes. The floating ball has a
specific gravity of 0.6 and has a radius of 5.5 cm. You
are asked to find the depth to which the ball is
submerged when floating in water.

Figure 3 Floating ball problem.
16

Example 1 Cont.

The equation that gives the depth x in meters
to which the ball is submerged under water is
given by

() 423 1099331650 -.+x.-xxf =

Use the Newton’s method of finding roots of equations to find
a) the depth ‘x’ to which the ball is submerged under water. Conduct three

iterations to estimate the root of the above equation.
b) The absolute relative approximate error at the end of each iteration, and
c) The number of significant digits at least correct at the end of each

iteration.

17

Figure 3 Floating ball problem.

Example 1 Cont.

() 423 1099331650 -.+x.-xxf =

To aid in the understanding
of how this method works to
find the root of an equation,
the graph of f(x) is shown to
the right,

where

Solution

Figure 4 Graph of the function f(x)

18

Example 1 Cont.

()

() x-xxf

.+x.-xxf -

33.03'

1099331650

2

423

=

=

Let us assume the initial guess of the root of
is . This is a reasonable guess (discuss why

and are not good choices) as the
extreme values of the depth x would be 0 and the
diameter (0.11 m) of the ball.

() 0=xf
m05.00 =x

0=x m11.0=x

Solve for ()xf '

19

Example 1 Cont.

()
()

() ()
() ()

()

06242.0

01242.00.05

109

10118.1
0.05

05.033.005.03

10.993305.0165.005.0
05.0

'

3

4

2

423

0

0
01

=

−−=

−

−=

−

+−
−=

−=

−

−

−

xf

xf
xx

Iteration 1
The estimate of the root is

20

Example 1 Cont.

Figure 5 Estimate of the root for the first iteration.

21

Example 1 Cont.

%90.19

100
06242.0

05.006242.0

100
1

01

=

−

=

−

=
x

xx
a

The absolute relative approximate error at the end of Iteration 1 is
a

The number of significant digits at least correct is 0, as you need an
absolute relative approximate error of 5% or less for at least one
significant digits to be correct in your result.

22

Example 1 Cont.

()
()

() ()
() ()

()
06238.0

104646.406242.0

1090973.8

1097781.3
06242.0

06242.033.006242.03

10.993306242.0165.006242.0
06242.0

'

5

3

7

2

423

1

1
12

=

−=

−

−
−=

−

+−
−=

−=

−

−

−

−

xf

xf
xx

Iteration 2
The estimate of the root is

23

Example 1 Cont.

Figure 6 Estimate of the root for the Iteration 2.

24

Example 1 Cont.

%0716.0

100
06238.0

06242.006238.0

100
2

12

=

−

=

−

=
x

xx
a

The absolute relative approximate error at the end of Iteration 2
is

a

The maximum value of m for which is 2.844.
Hence, the number of significant digits at least correct in the
answer is 2.

m

a

− 2105.0

25

Example 1 Cont.

()
()

() ()
() ()

()
06238.0

109822.406238.0

1091171.8

1044.4
06238.0

06238.033.006238.03

10.993306238.0165.006238.0
06238.0

'

9

3

11

2

423

2

2
23

=

−−=

−

−=

−

+−
−=

−=

−

−

−

−

xf

xf
xx

Iteration 3
The estimate of the root is

26

Example 1 Cont.

Figure 7 Estimate of the root for the Iteration 3.

27

Example 1 Cont.

%0

100
06238.0

06238.006238.0

100
2

12

=

−

=

−

=
x

xx
a

The absolute relative approximate error at the end of Iteration 3
is

a

The number of significant digits at least correct is 4, as only 4
significant digits are carried through all the calculations.

28

Advantages

◼ Converges fast (quadratic convergence), if
it converges.

◼ Requires only one guess

29

Results obtained from the Newton-Raphson method may
oscillate about the local maximum or minimum without
converging on a root but converging on the local maximum or
minimum.

Eventually, it may lead to division by a number close to zero
and may diverge.

For example for the equation has no real
roots.

Drawbacks – Oscillations near local
maximum and minimum

() 02 2 =+= xxf

3. Oscillations near local maximum and minimum

30

Drawbacks – Oscillations near local
maximum and minimum

-1

0

1

2

3

4

5

6

-2 -1 0 1 2 3

f(x)

x

 3

 4

 2

 1

 -1.75 -0.3040 0.5 3.142

Figure 10 Oscillations around local
minima for .() 2 2 += xxf

Iteration

Number

0

1

2

3

4

5

6

7

8

9

–1.0000

0.5

–1.75

–0.30357

3.1423

1.2529

–0.17166

5.7395

2.6955

0.97678

3.00

2.25

5.063

2.092

11.874

3.570

2.029

34.942

9.266

2.954

300.00

128.571

476.47

109.66

150.80

829.88

102.99

112.93

175.96

Table 3 Oscillations near local maxima
and mimima in Newton-Raphson method.

ix ()ixf %a

31

4. Root Jumping
In some cases where the function is oscillating and has a number
of roots, one may choose an initial guess close to a root. However, the
guesses may jump and converge to some other root.

For example

Choose

It will converge to

instead of
-1.5

-1

-0.5

0

0.5

1

1.5

-2 0 2 4 6 8 10

x

f(x)

 -0.06307 0.5499 4.461 7.539822

Drawbacks – Root Jumping

() 0 sin == xxf

()xf

539822.74.20 == x

0=x

2831853.62 == x Figure 11 Root jumping from intended
location of root for

.() 0 sin == xxf

32

Pros and Cons

• Pro: The error of the i+1th iteration

is roughly proportional to the

square of the error of the ith

iteration - this is called quadratic

convergence

• Con: Some functions show slow or

poor convergence

33

MATLAB’s fzero Function

• MATLAB’s fzero provides the best qualities of
both bracketing methods and open methods.
– Using an initial guess:
x = fzero(function, x0)

[x, fx] = fzero(function, x0)

• function is a function handle to the function being evaluated

• x0 is the initial guess

• x is the location of the root

• fx is the function evaluated at that root

– Using an initial bracket:
x = fzero(function, [x0 x1])

[x, fx] = fzero(function, [x0 x1])

• As above, except x0 and x1 are guesses that must bracket a
sign change

34

fzero Options

• Options may be passed to fzero as a third input

argument - the options are a data structure created
by the optimset command

• options = optimset(‘par1’, val1, ‘par2’, val2,…)

– parn is the name of the parameter to be set

– valn is the value to which to set that parameter

– The parameters commonly used with fzero are:

• display: when set to ‘iter’ displays a detailed record of all the

iterations

• tolx: A positive scalar that sets a termination tolerance on x.

35

fzero Example

• options = optimset(‘display’, ‘iter’);

– Sets options to display each iteration of root

finding process

• [x, fx] = fzero(@(x) x^10-1, 0.5, options)

– Uses fzero to find roots of f(x)=x10-1 starting with

an initial guess of x=0.5.

• MATLAB reports x=1, fx=0 after 35

function counts

36

Polynomials

• MATLAB has a built in program called roots to

determine all the roots of a polynomial - including

imaginary and complex ones.

• x = roots(c)

– x is a column vector containing the roots

– c is a row vector containing the polynomial coefficients

• Example:

– Find the roots of

f(x)=x5-3.5x4+2.75x3+2.125x2-3.875x+1.25

– x = roots([1 -3.5 2.75 2.125 -3.875 1.25])

37

Polynomials (cont)

• MATLAB’s poly function can be used to determine
polynomial coefficients if roots are given:
– b = poly([0.5 -1])

• Finds f(x) where f(x) =0 for x=0.5 and x=-1

• MATLAB reports b = [1.000 0.5000 -0.5000]

• This corresponds to f(x)=x2+0.5x-0.5

• MATLAB’s polyval function can evaluate a
polynomial at one or more points:
– a = [1 -3.5 2.75 2.125 -3.875 1.25];

• If used as coefficients of a polynomial, this corresponds to
f(x)=x5-3.5x4+2.75x3+2.125x2-3.875x+1.25

– polyval(a, 1)

• This calculates f(1), which MATLAB reports as -0.2500

38

