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Numerical Differentiation

◼ Calculus is the mathematics of change. Because engineers 

must continuously deal with systems and processes that 

change, calculus is an essential tool of engineering.

◼ Standing in the heart of calculus are the mathematical concepts 

of differentiation and integration:
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Noncomputer Methods for Differentiation 

and Integration

◼ The function to be differentiated or integrated 
will typically be in one of the following three 
forms:

• A simple continuous function such as polynomial, an 
exponential, or a trigonometric function.

• A complicated continuous function that is difficult or 
impossible to differentiate or integrate directly.

• A tabulated function where values of x and f(x) are 
given at a number of discrete points, as is often the 
case with experimental or field data.



Forward Difference Approximation
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Graphical Representation Of Forward 
Difference Approximation
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Example 1 (Discrete)

The upward velocity of a rocket is given as
a function of time in Table 1.

Using forward divided difference, find the acceleration of the rocket at              .

t v(t)

s m/s

0 0

10 227.04

15 362.78

20 517.35

22.5 602.97

30 901.67

Table 1 Velocity as a function of time

s 16=t
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Example 1 Cont.
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To find the acceleration at             , we need to choose the two values 
closest to            , that also bracket              to evaluate it. The two 
points are              and            .
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Example 1 Cont.
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Example 2 (Continuous Case)

The velocity of a rocket is given by

( ) 300,8.9
21001014

1014
ln2000
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where ''ν is given in m/s and ''t is given in seconds. 

a) Use forward difference approximation of the first derivative of        to 
calculate the acceleration at            . Use a step size of            .

b) Find the exact value of the acceleration of the rocket.
c) Calculate the absolute relative true error for part (b).

( )tν
st 16= st 2Δ =
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Example 2 Cont.

Solution
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Example 2 Cont.
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Example 2 Cont.
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The exact value of ( )16a can be calculated by differentiating 
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Example 2 Cont.

Analytical Solution (TRUE or Symbolic): Knowing that
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Example 2 Cont.
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Backward Difference Approximation

We know 
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Backward Difference Approximation of the 
First Derivative Cont.

This is a backward difference approximation as you are taking a point
backward from x. To find the value of ( )xf  at ixx = , we may choose another

point 'Δ' x behind as 1−= ixx . This gives
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xx-Δx

x
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Figure 2 Graphical Representation of backward difference 
approximation of first derivative

Backward Difference Approximation of the 
First Derivative Cont.
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Example 3

The velocity of a rocket is given by
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where ''ν is given in m/s and ''t is given in seconds. 

a) Use backward difference approximation of the first derivative of        
to calculate the acceleration at           . Use a step size of           .

b) Find the absolute relative true error for part (a).
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Example 3 Cont.
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Example 3 Cont.
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Example 3 Cont.

The absolute relative true error is

100
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The exact value of the acceleration at from Example 1 is

( ) 2m/s674.2916 =a

s 16=t
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Central Divided Difference

Hence showing that we have obtained a more accurate formula as the  

error is of the order of           .( )2Δ0 x

x

f(x)

x-Δx      x     x+Δx

Figure 3 Graphical Representation of central difference approximation of first derivative 
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Example 4

The velocity of a rocket is given by
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where ''ν is given in m/s and ''t is given in seconds. 

(a) Use central divided difference approximation of the first derivative of 
to calculate the acceleration at           . Use a step size of           .

(b) Find the absolute relative true error for part (a).
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Example 4 cont.
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Example 4 cont.

( )
( )

( )188.9
1821001014

1014
ln200018

4

4

−








−


=

m/s02.453=

( )
( )

( )148.9
1421001014

1014
ln200014

4

4

−








−


=

m/s24.334=

( )
( ) ( )

4

1418
16

 −
a

4

24.33402.453 −


2m/s694.29



25

Example 4 cont.

The absolute relative true error is
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The exact value of the acceleration at from Example 1 is
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Comparision of FDD, BDD, CDD

The results from the three difference approximations are given in Table 1.

Type of Difference

Approximation

Forward

Backward

Central

30.475

28.915

29.695

2.6967

2.5584

0.069157

Table 1 Summary of a (16) using different divided difference approximations 

( )16a
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%t
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Finding the value of the derivative 
within a prespecified tolerance

In real life, one would not know the exact value of the derivative – so how  

would one know how accurately they have found the value of the derivative.  

A simple way would be to start with a step size and keep on halving the step 

size and keep on halving the step size until the absolute relative approximate 

error is within a pre-specified tolerance. 

Take the example of finding for( )tv
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1.2792

0.64787

0.32604

0.16355
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Finding the value of the derivative 
within a prespecified tolerance Cont.

Given in Table 2 are the values obtained using the backward difference 
approximation method and the corresponding absolute relative 
approximate errors. 

t ( )tv %a

Table 2 First derivative approximations and relative errors for
different Δt values of backward difference scheme
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Finding the value of the derivative 
within a prespecified tolerance Cont.

From the above table, one can see that the absolute relative 

approximate error decreases as the step size is reduced. At 125.0=t

the absolute relative approximate error is 0.16355%, meaning that

at least 2 significant digits are correct in the answer. 



Numerical Differentiation with 
MATLAB

◼ MATLAB has built-in functions to help take 
derivatives, polyder, diff and gradient:

◼ polyder: returns the deriviative of a polynomial

◼ diff(x):Returns the difference between adjacent 
elements in x



Numerical Differentiation with 
MATLAB

◼ fx = gradient(f, h): determines the derivative of 
the data in f at each of the points.  

◼ The program uses forward difference for the first 
point, backward difference for the last point, and 
centered difference for the interior points.  h is the 
spacing between points; if omitted h=1.

◼ The major advantage of gradient over diff is 
gradient’s result is the same size as the original data.

◼ Gradient can also be used to find partial derivatives 
for matrices:
[fx, fy] = gradient(f, h)



Polynomial/Symbolic 
Conversions

◼ sym2poly(s) converts from a symbolic 
expression s to a row vector 
representing polynomial coefficients

◼ poly2sym(p) converts from the row 
vector representing polynomial 
coefficients p to a symbolic expression

32



Symbolic Expressions

◼ Create symbolic variables using the sym function, 
e.g.

• a = sym(‘a’);

• Shortcut for a lot of these:  syms x y z

• symvar = sym(‘x^3 – 2’);

◼ Symbolic math: doing math on symbols!

• Using normal operators e.g. +, -, *, etc.

◼ Symbolic expressions are rational, e.g. kept in 
fractional form so sym(2/4) returns 1/2 rather than 
0.5

33



Symbolic Functions
◼ simplify simplifies expressions

◼ collect collects like terms

◼ expand multiplies out terms

◼ factor factors a symbolic expression

◼ subs substitutes a value into an expression

◼ numden returns separately the numerator and 
denominator of a fraction

◼ pretty is a display function; shows exponents

◼ ezplot will draw a 2-D plot in the x-range from -2  to 2 

34



Examples
>> y = sym('y');
>> a = y * sym('y^2')
a =
y^3

>> a/y
ans =
y^2

>> subs(a,4)
ans =

64

>> 1/4 + 3/6
ans =

0.7500

>> [n d] = numden(sym(1/4 + 3/6))
n =
3

d =
4

>> syms a
>> expand((a+3)*(a-2))
ans =
a^2+a-6

35



Calculus: 
Integration/Differentiation

◼ trapz:  implements the trapezoidal rule to 
approximate an integral

◼ quad: implements Simpson’s method

◼ polyint: returns the integral of a polynomial

◼ polyder: returns the deriviative of a polynomial

◼ Calculus in Symbolic Math Toolbox:

• diff to differentiate

• int to integrate
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