Numerical Differentiation

Calculus is the mathematics of change. Because engineers must continuously deal with systems and processes that change, calculus is an essential tool of engineering.

- Standing in the heart of calculus are the mathematical concepts of differentiation and integration:

$$
\begin{aligned}
& \frac{\Delta y}{\Delta x}=\frac{f\left(x_{i}+\Delta x\right)-f\left(x_{i}\right)}{\Delta x} \\
& \frac{d y}{d x}=\Delta_{\Delta x} \underline{l i m}_{0} \frac{f\left(x_{i}+\Delta x\right)-f\left(x_{i}\right)}{\Delta x} \\
& I=\int_{a}^{b} f(x) d x
\end{aligned}
$$

Noncomputer Methods for Differentiation

 and Integration- The function to be differentiated or integrated will typically be in one of the following three forms:
- A simple continuous function such as polynomial, an exponential, or a trigonometric function.
- A complicated continuous function that is difficult or impossible to differentiate or integrate directly.
- A tabulated function where values of x and $\mathrm{f}(\mathrm{x})$ are given at a number of discrete points, as is often the case with experimental or field data.

Forward Difference Approximation

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

For a finite $\quad \Delta x$ '

$$
f^{\prime}(x) \approx \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

For th
discrete case

$$
f^{\prime}\left(x_{i}\right) \approx \frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{\Delta x}
$$

Absolute relative true error

Graphical Representation Of Forward Difference Approximation

Example 1 (Discrete)

The upward velocity of a rocket is given as a function of time in Table 1.

Table 1 Velocity as a function of time

\mathbf{t}	$\mathbf{v}(\mathbf{t})$
s	m / s
0	0
10	227.04
15	362.78
20	517.35
22.5	602.97
30	901.67

Using forward divided difference, find the acceleration of the rocket at $t=16 \mathrm{~s}$.

Example 1 Cont.

Solution

To find the acceleration at $t=16 \mathrm{~s}$, we need to choose the two values closest to $t=16 \mathrm{~s}$, that also bracket $t=16 \mathrm{~s}$ to evaluate it. The two points are $t=15 \mathrm{~s}$ and $t=20 \mathrm{~s}$.

$$
\begin{aligned}
a\left(t_{i}\right) & \approx \frac{v\left(t_{i+1}\right)-v\left(t_{i}\right)}{\Delta t} \\
t_{i} & =15 \\
t_{i+1} & =20 \\
\Delta t & =t_{i+1}-t_{i} \\
& =20-15 \\
& =5
\end{aligned}
$$

Example 1 Cont.

$$
\begin{aligned}
a(16) & \approx \frac{v(20)-v(15)}{5} \\
& \approx \frac{517.35-362.78}{5} \\
& \approx 30.914 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Example 2 (Continuous Case)

The velocity of a rocket is given by

$$
v(t)=2000 \ln \left[\frac{14 \times 10^{4}}{14 \times 10^{4}-2100 t}\right]-9.8 t, 0 \leq t \leq 30
$$

where ' v ' is given in m / s and ' t ' is given in seconds.
a) Use forward difference approximation of the first derivative of $v(t)$ to calculate the acceleration at $t=16 s$. Use a step size of $\Delta t=2 s$.
b) Find the exact value of the acceleration of the rocket.
c) Calculate the absolute relative true error for part (b).

Example 2 Cont.

Solution

$$
\begin{aligned}
a\left(t_{i}\right) & \approx \frac{v\left(t_{i+1}\right)-v\left(t_{i}\right)}{\Delta t} \\
t_{i} & =16 \\
\Delta t & =2 \\
t_{i+1} & =t_{i}+\Delta t \\
& =16+2 \\
& =18 \\
a(16) & \approx \frac{v(18)-v(16)}{2}
\end{aligned}
$$

Example 2 Cont.

$$
\begin{aligned}
v(18) & =2000 \ln \left[\frac{14 \times 10^{4}}{14 \times 10^{4}-2100(18)}\right]-9.8(18) \\
& =453.02 \mathrm{~m} / \mathrm{s} \\
v(16) & =2000 \ln \left[\frac{14 \times 10^{4}}{14 \times 10^{4}-2100(16)}\right]-9.8(16) \\
& =392.07 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Hence

$$
a(16) \approx \frac{v(18)-v(16)}{2}
$$

Example 2 Cont.

$$
\begin{aligned}
& \approx \frac{453.02-392.07}{2} \\
& \approx 30.474 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

b) The exact value of $a(16)$ can be calculated by differentiating

$$
v(t)=2000 \ln \left[\frac{14 \times 10^{4}}{14 \times 10^{4}-2100 t}\right]-9.8 t
$$

as

$$
a(t)=\frac{d}{d t}[v(t)]
$$

Example 2 Cont.

Analytical Solution (TRUE or Symbolic): Knowing that

$$
\begin{aligned}
\frac{d}{d t} & {[\ln (t)]=\frac{1}{t} \quad \text { and } \quad \frac{d}{d t}\left[\frac{1}{t}\right]=-\frac{1}{t^{2}} } \\
a(t) & =2000\left(\frac{14 \times 10^{4}-2100 t}{14 \times 10^{4}}\right) \frac{d}{d t}\left(\frac{14 \times 10^{4}}{14 \times 10^{4}-2100 t}\right)-9.8 \\
& =2000\left(\frac{14 \times 10^{4}-2100 t}{14 \times 10^{4}}\right)(-1)\left(\frac{14 \times 10^{4}}{\left(14 \times 10^{4}-2100 t\right)^{2}}\right)(-2100)-9.8 \\
& =\frac{-4040-29.4 t}{-200+3 t}
\end{aligned}
$$

Example 2 Cont.

$$
\begin{aligned}
a(16) & =\frac{-4040-29.4(16)}{-200+3(16)} \\
& =29.674 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

The absolute relative true error is

$$
\begin{aligned}
\left|\epsilon_{t}\right| & =\left|\frac{\text { True Value }- \text { Approximat e Value }}{\text { True Value }}\right| x 100 \\
& =\left|\frac{29.674-30.474}{29.674}\right| x 100 \\
& =2.6967 \%
\end{aligned}
$$

Backward Difference Approximation

We know

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

For a finite ' Δx ',

$$
f^{\prime}(x) \approx \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

If ' Δx ' is chosen as a negative number,

$$
\begin{aligned}
f^{\prime}(x) & \approx \frac{f(x-\Delta x)-f(x)}{-\Delta x} \\
& =\frac{f(x)-f(x-\Delta x)}{\Delta x}
\end{aligned}
$$

Backward Difference Approximation of the First Derivative Cont.

This is a backward difference approximation as you are taking a point backward from x . To find the value of $f^{\prime}(x)$ at $x=x_{i}$, we may choose another point ' Δx ' behind as $x=x_{i-1}$. This gives

$$
\begin{aligned}
f^{\prime}\left(x_{i}\right) & \approx \frac{f\left(x_{i}\right)-f\left(x_{i-1}\right)}{\Delta x} \\
& =\frac{f\left(x_{i}\right)-f\left(x_{i-1}\right)}{x_{i}-x_{i-1}}
\end{aligned}
$$

where

$$
\Delta x=x_{i}-x_{i-1}
$$

Backward Difference Approximation of the First Derivative Cont.

Figure 2 Graphical Representation of backward difference approximation of first derivative

Example 3

The velocity of a rocket is given by
$v(t)=2000 \ln \left[\frac{14 \times 10^{4}}{14 \times 10^{4}-2100 t}\right]-9.8 t, 0 \leq t \leq 30$
where ' v ' is given in m / s and ' t ' is given in seconds.
a) Use backward difference approximation of the first derivative of $v(t)$ to calculate the acceleration at $t=16 \mathrm{~s}$. Use a step size of $\Delta t=2 s$.
b) Find the absolute relative true error for part (a).

Example 3 Cont.

Solution

$$
\begin{aligned}
a(t) & \approx \frac{v\left(t_{i}\right)-v\left(t_{i-1}\right)}{\Delta t} \\
t_{i} & =16 \\
\Delta t & =2 \\
t_{i-1} & =t_{i}-\Delta t \\
& =16-2 \\
& =14 \\
a(16) & \approx \frac{v(16)-v(14)}{2}
\end{aligned}
$$

Example 3 Cont.

$$
\begin{aligned}
v(16) & =2000 \ln \left[\frac{14 \times 10^{4}}{14 \times 10^{4}-2100(16)}\right]-9.8(16) \\
& =392.07 \mathrm{~m} / \mathrm{s} \\
v(14) & =2000 \ln \left[\frac{14 \times 10^{4}}{14 \times 10^{4}-2100(14)}\right]-9.8(14) \\
& =334.24 \mathrm{~m} / \mathrm{s} \\
a(16) & \approx \frac{v(16)-v(14)}{2} \\
& =\frac{392.07-334.24}{2} \\
& \approx 28.915 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Example 3 Cont.

The exact value of the acceleration at $t=16 \mathrm{~s}$ from Example 1 is

$$
a(16)=29.674 \mathrm{~m} / \mathrm{s}^{2}
$$

The absolute relative true error is

$$
\begin{aligned}
\left|\epsilon_{t}\right| & =\left|\frac{29.674-28.915}{29.674}\right| x 100 \\
& =2.5584 \%
\end{aligned}
$$

Central Divided Difference

Hence showing that we have obtained a more accurate formula as the error is of the order of $0(\Delta x)^{2}$.

Figure $\mathbf{3}$ Graphical Representation of central difference approximation of first derivative

Example 4

The velocity of a rocket is given by
$v(t)=2000 \ln \left[\frac{14 \times 10^{4}}{14 \times 10^{4}-2100 t}\right]-9.8 t, 0 \leq t \leq 30$
where ' v ' is given in m / s and ' t ' is given in seconds.
(a) Use central divided difference approximation of the first derivative of $v(t)$ to calculate the acceleration at $t=16 \mathrm{~s}$. Use a step size of $\Delta t=2 \mathrm{~s}$.
(b) Find the absolute relative true error for part (a).

Example 4 cont.

Solution

$$
\begin{aligned}
a\left(t_{i}\right) & \approx \frac{v\left(t_{i+1}\right)-v\left(t_{i-1}\right)}{2 \Delta t} \\
t_{i} & =16 \\
\Delta t & =2 \\
t_{i+1} & =t_{i}+\Delta t \\
& =16+2 \\
& =18 \\
t_{i-1} & =t_{i}-\Delta t \\
& =16-2 \\
& =14 \\
a(16) & \approx \frac{v(18)-v(14)}{2(2)} \\
& \approx \frac{v(18)-v(14)}{4}
\end{aligned}
$$

Example 4 cont.

$$
\begin{aligned}
v(18) & =2000 \ln \left[\frac{14 \times 10^{4}}{14 \times 10^{4}-2100(18)}\right]-9.8(18) \\
& =453.02 \mathrm{~m} / \mathrm{s} \\
v(14) & =2000 \ln \left[\frac{14 \times 10^{4}}{14 \times 10^{4}-2100(14)}\right]-9.8(14) \\
& =334.24 \mathrm{~m} / \mathrm{s} \\
a(16) & \approx \frac{v(18)-v(14)}{4} \\
& \approx \frac{453.02-334.24}{4} \\
& \approx 29.694 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Example 4 cont.

The exact value of the acceleration at $t=16 \mathrm{~s}$ from Example 1 is $a(16)=29.674 \mathrm{~m} / \mathrm{s}^{2}$
The absolute relative true error is

$$
\begin{aligned}
\left|\epsilon_{t}\right| & =\left|\frac{29.674-29.694}{29.674}\right| \times 100 \\
& =0.069157 \%
\end{aligned}
$$

Comparision of FDD, BDD, CDD

The results from the three difference approximations are given in Table 1.

Table 1 Summary of $a(16)$ using different divided difference approximations

Type of Difference Approximation	$a(16)$ $\left(\mathrm{m} / \mathrm{s}^{2}\right)$	$\left\|\epsilon_{t}\right\| \%$
Forward Backward	30.475	2.6967
Central	28.915	2.5584

Finding the value of the derivative within a prespecified tolerance

In real life, one would not know the exact value of the derivative - so how would one know how accurately they have found the value of the derivative. A simple way would be to start with a step size and keep on halving the step size and keep on halving the step size until the absolute relative approximate error is within a pre-specified tolerance.

Take the example of finding $v^{\prime}(t)$ for

$$
v(t)=2000 \ln \left[\frac{14 \times 10^{4}}{14 \times 10^{4}-2100 t}\right]-9.8 t
$$

at $t=16$ using the backward divided difference scheme.

Finding the value of the derivative within a prespecified tolerance Cont.

Given in Table 2 are the values obtained using the backward difference approximation method and the corresponding absolute relative approximate errors.
Table 2 First derivative approximations and relative errors for different Δt values of backward difference scheme

Δt	$v^{\prime}(t)$	$\left\|\epsilon_{a}\right\| \%$
2	28.915	
1	29.289	1.2792
0.5	29.480	0.64787
0.25	29.577	0.32604
0.125	29.625	0.16355

Finding the value of the derivative within a prespecified tolerance Cont.

From the above table, one can see that the absolute relative approximate error decreases as the step size is reduced. At $\Delta t=0.125$ the absolute relative approximate error is 0.16355%, meaning that at least 2 significant digits are correct in the answer.

Numerical Differentiation with MATLAB

- MATLAB has built-in functions to help take derivatives, polyder, diff and gradient:
- polyder: returns the deriviative of a polynomial
- diff(\boldsymbol{x} : Returns the difference between adjacent elements in x

Numerical Differentiation with MATLAB

- $\boldsymbol{f x}=\boldsymbol{g r a d i e n t}(\boldsymbol{f} \boldsymbol{f})$: determines the derivative of the data in f at each of the points.
- The program uses forward difference for the first point, backward difference for the last point, and centered difference for the interior points. h is the spacing between points; if omitted $\mathrm{h}=1$.
- The major advantage of gradient over diff is gradient's result is the same size as the original data.
- Gradient can also be used to find partial derivatives for matrices:
$[f x, f y]=\operatorname{gradient}(f, h)$

Polynomial/Symbolic Conversions

- sym2poly(s) converts from a symbolic expression s to a row vector representing polynomial coefficients
- poly2sym(p) converts from the row vector representing polynomial coefficients p to a symbolic expression

Symbolic Expressions

- Create symbolic variables using the sym function, e.g.
- $a=\operatorname{sym}\left({ }^{\prime} a\right.$ ');
- Shortcut for a lot of these: syms xyz
- symvar = sym('x^3-2’);
- Symbolic math: doing math on symbols!
- Using normal operators e.g.,,$+- *$, etc.
- Symbolic expressions are rational, e.g. kept in fractional form so sym(2/4) returns $1 / 2$ rather than 0.5

Symbolic Functions

- simplify simplifies expressions
- collect collects like terms
- expand multiplies out terms
- factor factors a symbolic expression
- subs substitutes a value into an expression
- numden returns separately the numerator and denominator of a fraction
- pretty is a display function; shows exponents
- ezplot will draw a 2-D plot in the x-range from -2π to 2π

Examples

$$
\begin{aligned}
& \gg 1 / 4+3 / 6 \\
& \text { ans }= \\
& \quad 0.7500 \\
& \gg[n \text { d }]=\text { numden }(\operatorname{sym}(1 / 4+3 / 6)) \\
& n= \\
& 3
\end{aligned}
$$

$$
d=
$$

$$
4
$$

>> syms a

$$
\gg \text { expand }((a+3) *(a-2))
$$

ans =

$$
a^{\wedge} 2+a-6
$$

Calculus: Integration/Differentiation

- trapz: implements the trapezoidal rule to approximate an integral
- quad: implements Simpson's method
- polyint: returns the integral of a polynomial
- polyder: returns the deriviative of a polynomial
- Calculus in Symbolic Math Toolbox:
- diff to differentiate
- int to integrate

