Numerical Differentiation

ialculus IS the mathematics of change. Because engineers
must continuously deal with systems and processes that
change, calculus Is an essential tool of engineering.

= Standing in the heart of calculus are the mathematical concepts
of differentiation and integration:
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Noncomputer Methods for Differentiation
and Integration

= The function to be differentiated or integrated
will typically be in one of the following three
forms:

. A simple continuous function such as polynomial, an
exponential, or a trigonometric function.

. A complicated continuous function that is difficult or
Impossible to differentiate or integrate directly.

. A tabulated function where values of x and f(x) are
given at a number of discrete points, as Is often the
case with experimental or field data.



Forward Difference Approximation
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Graphical Representation Of Forward

‘L Difference Approximation
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Example 1 (Discrete) 1

.’_\I

The upward velocity of a rocket is given as
a function of time in Table 1.

Table 1 Velocity as a function of time

t v(t)
S m/s
0 0
10 227.04
15 362.78
20 517.35
22.5 602.97
30 901.67

Using forward divided difference, find the acceleration of the rocket at t =16 g



Example 1 Cont.

Solution
To find the acceleration at t =16s, we need to choose the two values
closest to t =165, that also bracket t =16S to evaluate it. The two
points are t =15s and t = 20s,

alt)~ V(t,)-v(t)

At
t =15
ti+1 — 20
At=t -t

I+1
=20-15



Example 1 Cont.

a(16)~ v(20)-v(15)

517.35-362.78

5
~30.914 m/s*




Example 2 (Continuous Case)

The velocity of a rocket is given by

14 x10*
14 x10* — 2100t

v(t) = 2000 In{ }— 9.8t,0<t<30

where 'y' is given in m/s and 't' is given in seconds.

a) Use forward difference approximation of the first derivative of v(t) to
calculate the acceleration at t =16S, Use a step size of At =2s,

b) Find the exact value of the acceleration of the rocket.

c) Calculate the absolute relative true error for part (b).



Example 2 Cont.

Solution
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v(18) = 2000 In{

Example 2 Cont.

4
14 x10 }_ 0.8(18)

14 x10* —2100(18)

= 453.02m/s

v(16)= 2000 In{

4
14x10* —2100(16)

=392.07m/s

Hence

a(16)~ V(18); v(16)
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Example 2 Cont.

433.02-392.07
2

~ 30.474m/s?

b) The exact value of a(16) can be calculated by differentiating

4
v(t):ZOOOIn{ 14>10 }—9&

14 x10" — 2100t

das
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Example 2 Cont.

Analytical Solution (TRUE or Symbolic): Knowing that

d 1 di1| 1
a[ln(t)]:f and a|:f:|__t_2

14 x10* dt| 14 x10* — 2100t

4 4
a(t):ZOOO(MXlO 2100tjd( 14 %10 j_9'8

4 4
_ 2000(14><10 24100tj(_ ! 14 %10 |- 2100)-9.8
14x10 (14x10* - 2100t)

_ —4040 — 29.4t
— 200 +3t
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Example 2 Cont.

A(16)= = 4040 — 29.4(16)
—200 +3(16)

=29.674m/s’

The absolute relative true error is

True Value - Approximat e Value
True Value

x100

‘Et‘ =

_ 29.67/4 -30.474 ‘XlOO

29.674

=2.6967%
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Backward Difference Approximation

We know

PR

For a finite "AX"

oy F(x+Ax)— f(x)
f(X)N AX

If 'Ax' is chosen as a negative number,

f1(x) ~ f(x—fo)X— f(x)
f(x)— f(x—Ax)
AX
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Backward Difference Approximation of the
First Derivative Cont.

This is a backward difference approximation as you are taking a point
backward from x. To find the value of f'(x) at X = X;, we may choose another

point 'AX' behind as X = X._,. This gives

) T 1)

AX
_ fx)-fx)

where
AX =X, — X4
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Backward Difference Approximation of the
First Derivative Cont.
1

f(x)

] / x-éAx X

Figure 2 Graphical Representation of backward difference
approximation of first derivative
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Example 3

The velocity of a rocket is given by

14 x10*
14 x10* — 2100t

v(t) = 2000 In{ }— 9.8t,0<t<30

where 'y' is given in m/s and 't' is given in seconds.

a) Use backward difference approximation of the first derivative of v(t)
to calculate the acceleration at t =16S, Use a step size of At =25,
b) Find the absolute relative true error for part (a).
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Solution

Example 3 Cont.



19

v(16) = 2000 In{

Example 3 Cont.

4
14 10 ~9.8(16)
14 x10* — 2100(16)

=392.07m/s

v(14) = 2000 In{
=334.24m/s

a(16 =

14 x 10" )} _9.8(14)

14 x10* —2100(14

) v(16)—v(14)

©302.07-334.24

2

~ 28.915m/s’
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Example 3 Cont.

The exact value of the acceleration at t=16s from Example 1 is
a(16)=29.674m/s’

The absolute relative true error is

el - ‘29.674 —28.915
t 29.674

‘ x100

= 2.5584 %
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Central Divided Difference

Hence showing that we have obtained a more accurate formula as the
error is of the order of O(Ax)’.

R
f(x)

/

Figure 3 Graphical Representation of central difference approximation of first derivative
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Example 4

The velocity of a rocket is given by

14 x10*
14 x10* — 2100t

v(t)= 2000 In{ }—9&,0 <t<30

where 'y' is given in m/s and 't' is given in seconds.

(a) Use central divided difference approximation of the first derivative of v(t)
to calculate the acceleration at t =16S | Use a step size of At =2s,
(b) Find the absolute relative true error for part (a).
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Solution
a(ti ) ~ V(ti+1

Example 4 cont.

)_V(ti—l)

t =16
At=2

2At

t., =t +At
=16+2

=18

t =t —At
=16-2

=14

a(16)~ v(18)

—v(14)

2(2)

v(18)-1(14)

~y
"~y

4
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v(18) = 2000 In{

Example 4 cont.

4
14 x10* —2100(18)

= 453.02m/s

v(14) = 2000 In{

4
24 X1 -9.8(14)
14 x10* —2100(14)

=334.24m/s

a(16)~ v(18)—v(14)

4
453.02 -

334.24

4

~ 29.694 m/52
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Example 4 cont.

The exact value of the acceleration at t =16 s from Example 1 is
a(16) = 29.674m/s’

The absolute relative true error is

x100

‘ ‘:‘29.674—29.694
t 29.674

=0.069157 %



Comparision of FDD, BDD, CDD

The results from the three difference approximations are given in Table 1.

Table 1 Summary of g (16) using different divided difference approximations

Type of Difference a(16)

Approximation (i) e |%
Forward 30.475 2.6967
Backward 28.915 2.5584
Central 29.695 0.069157
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Finding the value of the derivative
within a prespecified tolerance

In real life, one would not know the exact value of the derivative — so how
would one know how accurately they have found the value of the derivative.

A simple way would be to start with a step size and keep on halving the step
size and keep on halving the step size until the absolute relative approximate

error is within a pre-specified tolerance.

Take the example of finding v’(t) for

4
v(t):ZOOOIn{ 1410 }—9&

14 x10* — 2100t

at t =16 using the backward divided difference scheme.
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Finding the value of the derivative
within a prespecified tolerance Cont.

Given in Table 2 are the values obtained using the backward difference
approximation method and the corresponding absolute relative
approximate errors.

Table 2 First derivative approximations and relative errors for
different At values of backward difference scheme

s )| e

2 28.915

1 29.289 |1.2792
0.5 29.480 |0.64787
0.25 [29.577 |0.32604
0.125 | 29.625 | 0.16355
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Finding the value of the derivative
within a prespecified tolerance Cont.

From the above table, one can see that the absolute relative
approximate error decreases as the step size is reduced. At At =0.125
the absolute relative approximate error is 0.16355%, meaning that

at least 2 significant digits are correct in the answer.



Numerical Differentiation with
MATLAB

= MATLAB has built-in functions to help take
derivatives, polyder, diff and gradient:

= polyder: returns the deriviative of a polynomial

= diff(x):Returns the difference between adjacent
elements in x



Numerical Differentiation with
MATLAB

fx = gradient(f£, h): determines the derivative of
the data in f at each of the points.

The program uses forward difference for the first
point, backward difference for the last point, and
centered difference for the interior points. h is the
spacing between points; if omitted h=1.

The major advantage of gradient over diff is
gradient’s result is the same size as the original data.

Gradient can also be used to find partial derivatives

for matrices:
[ fx, fy] = gradient(f, h)



Polynomial/Symbolic
Conversions

= sym2poly(s) converts from a symbolic
expression s to a row vector
representing polynomial coefficients

= poly2sym(p) converts from the row
vector representing polynomial
coefficients p to a symbolic expression

32
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Symbolic Expressions

= Create symbolic variables using the sym function,
e.g.
. @a=sym(‘a’);
. Shortcut for a lot of these: syms xy z
. symvar = sym( 'x"\3-2");
= Symbolic math: doing math on symbols!
. Using normal operators e.qg. +, -, *, etc.

= Symbolic expressions are rational, e.g. kept in
fractional form so sym(2/4) returns 1/2 rather than
0.5



34

Symbolic Functions

simplify simplifies expressions

collect collects like terms

expand multiplies out terms

factor factors a symbolic expression

subs substitutes a value into an expression

numden returns separately the numerator and
denominator of a fraction

pretty is a display function; shows exponents
ezplot will draw a 2-D plot in the x-range from -2 7 to 2 =
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>>y = sym(y');

>>a =y *sym('y™2")
ad =

y~3

>> aly
ans =
y"2

>> subs(a,4)
ans =
64

Examples

>>1/4 + 3/6
ans =
0.7500

>> [n d] = numden(sym(1/4 + 3/6))
n =
3

d=
4

>> Syms a

>> expand((a+3)*(a-2))
ans =

a2+a-6
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Calculus:
Integration/Differentiation

trapz: implements the trapezoidal rule to
approximate an integral

quad: implements Simpson’s method

polyint: returns the integral of a polynomial
polyder: returns the deriviative of a polynomial
Calculus in Symbolic Math Toolbox:

. diff to differentiate

. Int to integrate



