
NextHome Previous 1 o f 22

ess Ob jects

odularity supports easier development and
nce of applications.

dvantage is that is you have to understand a
t of the hierarchy before you can write your
f useful code. This makes using VBA diffi-

eginners (even for those with considerable
ce writing programs in BASIC or other

AO basics
 you probably do not know it, you already
e familiarity with the DAO hierarchy. For

, you know that a Database object (such as
x.mdb) contains other objects such as

ableDef objects) and queries (QueryDef
 Moving down the hierarchy, you know that
 objects contain Field objects.

-generation programming languages.
© M
Last

14.

The
of V
men
eng
com
vide

Bec
bas
nen
with
vice

Mic
ther
a hi
Acc
ichael Brydon (brydon@unixg.ubc.ca)
 update: 25-Aug-1997

Access Tutorial 14: Data Acc

1 Introduction: What is the DAO
hierarchy?

 core of Microsoft Access and an important part
isual Basic (the stand-alone application develop-
t environment) is the Microsoft Jet database

ine. The relational DBMS functionality of Access
es from the Jet engine; Access itself merely pro-
s a convenient interface to the database engine.

ause the application environment and the data-
e engine are implemented as separate compo-
ts, it is possible to upgrade or improve Jet
out altering the interface aspects of Access, and
-versa.

rosoft takes this component-based approach fur-
 in that the interface to the Jet engine consists of
erarchy of components (or “objects”) called Data
ess Objects (DAO). The advantage of DAO is

that its m
maintena

The disa
large par
first line o
cult for b
experien
3GLs*).

14.1.1 D
Although
have som
example
univ0_v

tables (T
objects).
TableDef

* Third

Introduction: What is the DAO hierarchy?14

NextHome Previous 2 o f 22

Un
co
cie

1.

2.

3.

14
Yo
ob
(T

ject has a number of properties that can be
served (read-only properties) or set (read/
perties). For example, each TableDef (table
) object has a read-only property called
ted and a read/write property called Name.

s an object’s properties in VBA, you nor-
 the <object name>.<property

yntax, e.g.,
es.DateCreated .

 avoid confusion between a property called
teCreated and a field (defined by you)
lled DateCreated , Access version 7.0
d above require that you use a bang (!)

stead of a period to indicate a field name or
me other object created by you as a devel-
er. For example:
ployees!DateCreated.Value

entifies the Value property of the DateCre-
. Data Access Objects

fortunately, the DAO hierarchy is somewhat more
mplex than this. However, at this level, it is suffi-
nt to recognize three things about DAO:

Each object that you create is an instance of a
class of similar objects (e.g., univ0_v x is a par-
ticular instance of the class of Database objects).
Each object may contain one or more Collec-
tions of objects. Collections simply keep all
objects of a similar type or function under one
umbrella. For example, Field objects such as
DeptCode and CrsNum are accessible through a
Collection called Fields).
Objects have properties and methods (see
below).

.1.2 Properties and methods
u should already be familiar with the concept of
ject properties from the tutorial on form design
utorial 6). The idea is much the same in DAO:

every ob
either ob
write pro
definition
DateCrea
To acces
mally use
name> s
Employe

To
Da

ca
an
in
so
op
Em

id

Introduction: What is the DAO hierarchy?14

NextHome Previous 3 o f 22

M
ap
th
th
Fi
re
m
<o

...

De

ject summaries in the on-line help if you are
sure.

bvious example of a method is the Cre-

 method of TableDef objects, e.g.:
es.CreateField(“Phone”,

5)

tes a field called Phone , of type dbText (a
 used to represent text), with a length of 25
rs.

ngines, workspaces, etc.
ing aspect of the DAO hierarchy is that you
imply refer to objects and their properties as
he examples above. As Figure 14.1 illus-
u must include the entire path through the
 in order to avoid any ambiguity between,
eptCode field in the Courses TableDef

d the DeptCode field in the qryCourses
f object.
. Data Access Objects

ated field (assuming one exists) in the
Employees table.

ethods are actions or behaviors that can be
plied to objects of a particular class. In a sense,

ey are like predefined functions that only work in
e context of one type of object. For example, all
eld objects have a method called FieldSize that
turns the size of the field. To invoke a object’s
ethods, you use the
bject name>.<method> [parameter 1,

, parameter n] syntax, e.g.,:
ptCode.FieldSize .

A reasonable question at this point might be:
Isn’t FieldSize a property of a field, not a
method? The answer to this is that the imple-
mentation of DAO is somewhat inconsistent in
this respect. The best policy is to look at the

ob
un

A more o
ateField

Employe

dbText, 2

This crea
constant
characte

14.1.3 E
A confus
cannot s
done in t
trates, yo
hierarchy
say, the D
object an
QueryDe

Introduction: What is the DAO hierarchy?14

NextHome Previous 4 o f 22

other classes...

 hierarchy.

Recordsets other classes...

ueries...

Legend

Courses

TableDefs object or collection

instance

By creating a database object at
the start of your VBA
programs, you bypass the top
part of the hierarchy.
. Data Access Objects

Courses

DBEngine

Workspaces

TableDefs

FIGURE 14.1: Navigating the DAO

Databases

QueryDefs

Indexes

Fields

other tables... qryCourses other q

DeptCode

Indexes

Fields

DeptCode

To access a particular field, you
have to understand the structure
of the DAO hierarchy.

Learning objectives14

NextHome Previous 5 o f 22

W
co
W
no
m
Da
da
da
Se

14

torial exercises

etting up a database object
ction you will write VBA code that creates a
 the currently open database.
e a new module called basDAOTest (see
n 12.3.3 for information on creating a new

le).
e a new subroutine called PrintRecords .
e the subroutine as follows:

bCurr As DATABASE

bCurr =
ngine.Workspaces(0).Databases(0)

g.Print dbCurr.Name

he procedure, as shown in Figure 14.2.

amine these three statements one by one.

bCurr As DATABASE

tatement declares the variable dbCurr as
ject of type Database. For complex objects
. Data Access Objects

orking down through the hierarchy is especially
nfusing since the first two levels (DBEngine and
orkspaces) are essentially abstractions that have
 physical manifestations in the Access environ-

ent. The easiest way around this is to create a
tabase object that refers to the currently open
tabase (e.g., univ0_v x.mdb) and start from the
tabase level when working down the hierarchy.
ction 14.3.1 illustrates this process for version 2.0.

.2 Learning objectives
� What is the DAO hierarchy?

� What are objects? What are properties and
methods?

� How do I create a reference to the current
database object? Why is this important?

� What is a recordset object?

� How do I search a recordset?

14.3 Tu

14.3.1 S
In this se
pointer to

• Creat
Sectio
modu

• Creat
• Defin

Dim d

Set d
DBE

Debu

• Run t

Let us ex

1. Dim d

This s
an ob

Tutorial exercises14

NextHome Previous 6 o f 22

rrent database.

Run the procedure to
ensure it works.�

Version 7.0 and above support a less
cumbersome way referring to the current
database—the CurrentDb function:
Set dbCurr = CurrentDb
. Data Access Objects

FIGURE 14.2: Create a pointer to the cu

Declare and set the pointer
(dbCurr) to the current
database.

�

Add a line to print the name
of the database.�

Although you can use the
Print statement by itself
in the debug window, you
must invoke the Print
method of the Debug object
from a module—hence the
Debug.Print syntax.

Tutorial exercises14

NextHome Previous 7 o f 22

2.

 not worry if you are not completely sure
at is going on at this point. As long as you
derstand that you can type the above two
es to create a pointer to your database,
en you are in good shape.

g.Print dbCurr.Name

tatement prints the name of the object to
 dbCurr refers.

reating a Recordset object
me implies, a TableDef object does not con-
ata; instead, it merely defines the structure
. When you view a table in design mode,
eeing the elements of the TableDef object.
u view a table in datasheet mode, in con-
 are seeing the contents of Recordset
sociated with the table.
. Data Access Objects

(in contrast to simple data types like integer,
string, etc.) Access does not allocate memory
space for a whole database object. Instead, it
allocates space for a pointer to a database
object. Once the pointer is created, you must set
it to point to an object of the declared type (the
object may exist already or you may have to cre-
ate it).
Set dbCurr = DBEngine.Work-

spaces(0).Databases(0)

(Note: this should be typed on one line). In this
statement, the variable dbCurr (a pointer to a
Database object) is set to point to the first Data-
base in the first Workspace of the only Database
Engine. Since the numbering of objects within a
collection starts at zero, Databases(0) indi-
cates the first Database object. Note that the first
Database object in the Databases collection is
always the currently open one.

Do
wh
un
lin
th

3. Debu

This s
which

14.3.2 C
As its na
tain any d
of a table
you are s
When yo
trast, you
object as

Tutorial exercises14

NextHome Previous 8 o f 22

To
in
ba
VB
ob
Re

•

•

Th
Re

1.

rsCourses to point to the newly created
dset.

 this Set statement is different than the pre-
 since the OpenRecordset method

 a new object being created (dbCurr points
sting database—the one you opened when
ed Access).

sing a Recordset object
ction, you will use some of the properties
ods of a Recordset object to print its con-

he following to PrintRecords :

ntil rsCourses.EOF

g.Print rsCourses!DeptCode & “ ”
Courses!CrsNum

rses.MoveNext

ode is explained in Figure 14.3.
. Data Access Objects

 access the data in a table using VBA, you have to
voke the OpenRecordset method of the Data-
se object. Since most of the processing you do in
A involves data access, familiarity with Recordset
jects is essential. In this section, you will create a
cordset object based on the Courses table.
Delete the Debug.Print dbCurr.Name line
from your program.
Add the following:

Dim rsCourses As Recordset

Set rsCourses =
dbCurr.OpenRecordset(“Courses”)

e first line declares a pointer (rsCourses) to a
cordset object. The second line does two things:

Invokes the OpenRecordset method of dbCurr
to create a Recordset object based on the table
named “Courses” . (i.e., the name of the table is
a parameter for the OpenRecordset method).

2. Sets
recor

Note that
vious one
results in
to an exi
you start

14.3.3 U
In this se
and meth
tents.

• Add t

Do U

Debu
& rs

rsCou

Loop

• This c

Tutorial exercises14

NextHome Previous 9 o f 22

cords in a Recordset object.

EOF is a property of the recordset.
It is true if the record counter has
reached the “end of file” (EOF)
marker and false otherwise.

The exclamation mark (!) indicates
that DeptCode is a user-defined
field (rather than a method or
property) of the recordset object.

nce the Value property is the default property
 a field, you do not have to use the
ecordset>!<field>.Value syntax.

The MoveNext method moves the
record counter to the next record in
the recordset.
. Data Access Objects

FIGURE 14.3: Create a program to loop through the re

Si
of
<r

Tutorial exercises14

NextHome Previous 10 o f 22

14
In
of
ta

An
re
ta
ot
st
cla

Th
th
(a

ndition (a string) that ensures that only one
 found.

ple, to get the Title of COMM 351 from
ses table, you would provide MyLookUp()
ollowing parameters:

 — a string containing the name of the
rom which we want to return a value;
se” — a string containing the name of the
e table; and,
Code = ‘COMM’ AND CrsNum =

 — a string that contains the entire
RE clause for the search.

te that both single and double quotation
arks must be used to signify a string within a
ring. The use of quotation marks in this
anner is consistent with standard practice in
glish. For example, the sentence:
e shouted, ‘Wait for me.’” illus-
. Data Access Objects

.3.4 Using the FindFirst method
 this section, you will use the FindFirst method
 Recordset objects to lookup a specific value in a
ble.
• Create a new function called MyLookUp() using

the following declaration:

Function MyLookUp(strField As
String, strTable As String,
strWhere As String) As String

 example of how you would use this function is to
turn the Title of a course from the Courses
ble with a particular DeptCode and CrsNum. In
her words, MyLookUp() is essentially an SQL
atement without the SELECT, FROM and WHERE
uses.

e parameters of the function are used to specify
e name of the table (a string), the name of the field
 string) from which you want the value, and a

WHERE co
record is

For exam
the Cour

with the f

1. “Title”

field f
2. “Cour

sourc
3. “Dept

‘335’”

WHE

No
m
st
m
En
“H

Tutorial exercises14

NextHome Previous 11 o f 22

cordset object to be opened (the Find-

rst method only works with “dynaset” type
cordsets, hence the need to include the
ditional parameter in this segment of code).

ords.FindFirst strWhere

A uses a rather unique convention to
termine whether to enclose the arguments

 a function, subroutine, or method in paren-
eses: if the procedure returns a value,
close the parameters in parentheses; oth-
wise, use no parentheses. For example, in
e line above, strWhere is a parameter of
e FindFirst method (which does not
turn a value).

 rsRecords.NoMatch() Then

okUp =
ecords.Fields(strField).Value
. Data Access Objects

trates the use of single quotes within double
quotes.

• Define the MyLookUp() function as follows:

Dim dbCurr As DATABASE

Set dbCurr = CurrentDb

If you are using version 2.0, you cannot use
the CurrentDb method to return a pointer to
the current database. You must use long form
(i.e., Set dbCurr = DBEngine…)

Dim rsRecords As Recordset

Set rsRecords =
dbCurr.OpenRecordset(strTable,
dbOpenDynaset)

In version 2.0, the name of some of the pre-
defined constants are different. As such, you
must use DB_OPEN_DYNASET rather than
dbOpenDynaset to specify the type of

Re
Fi

re
ad

rsRec

VB
de
of
th
en
er
th
th
re

If Not

MyLo
rsR

�

�

Tutorial exercises14

NextHome Previous 12 o f 22

As
al
tio

14
Th
Ac
re

our application, it is occasionally necessary
 a stand-alone query—that is, to use the

() function to retrieve a value from a table

ing DLookUp() for the first few times, the
 the function calls may seem intimidating.
u have to remember is the meaning of a
f constructs that you have already used.
nstructs are summarized below:
ions — DLookUp() is a function that
s a value. It can be used in the exact same
er as other functions, e.g.,
DLookUp(…) is similar to
cos(2*pi) .
d brackets () — In Access, round brackets
their usual meaning when grouping
er operations, e.g., 3*(5+1) . Round

ets are also used to enclose the arguments
ction calls, e.g., x = cos(2*pi) .
. Data Access Objects

Else

MyLookUp = “”

End If

• Execute the function with the following statement
(see Figure 14.4):

? MyLookUp(“Title”, “Courses”,
“DeptCode = 'COMM' AND CrsNum =
'351'”)

 it turns out, what you have implemented exists
ready in Access in the form of a predefined func-
n called DLookUp() .

• Execute the DLookUp() function by calling it in
the same manner in which you called
MyLookUp() .

.3.5 The DLookUp() function
e DLookUp() function is the “tool of last resort” in
cess. Although you normally use queries and
cordsets to provide you with the information you

need in y
to perform
DLookUp

or query.

When us
syntax of
But all yo
handful o
These co

• Funct
return
mann
x =

x =

• Roun
have
togeth
brack
of fun

Tutorial exercises14

NextHome Previous 13 o f 22

d a value in a table.

e NoMatch() method returns True if the
ndFirst method finds no matching records,
d False otherwise.

nce strField contains the name of a valid
eld object (Title) in the Fields collection,
is notation returns the value of Title .
. Data Access Objects

FIGURE 14.4: MyLookUp() : A function to fin

Th
Fi
an

Si
Fi
th

Tutorial exercises14

NextHome Previous 14 o f 22

•

COMM means that the variable x is equal to
lue of the variable COMM.
 quotation marks ‘ ’ — Single quotation
 have only one purpose: to replace normal
tion marks when two sets of quotation
 are nested. For example, the expression
roductID] = ‘123’” means that the
le x is equal to the string ProductID =

. In other words, when the expression is
ated, the single quotes are replaced with
e quotes. If you attempt to nest two sets of
e quotation marks (e.g., x = “[Produc-

 “123””) the meaning is ambiguous
ccess returns an error.
mpersand & — The ampersand is the con-
ation operator in Access/VBA and is unique
rosoft products. The concatenation opera-
ns two strings of text together into one
 of text. For example,
. Data Access Objects

• Square brackets [] — Square brackets are not
a universally defined programming construct like
round brackets. As such, square brackets have a
particular meaning in Access/VBA and this
meaning is specific to Microsoft products. Simply
put, square brackets are used to signify the name
of a field, table, or other object in the DAO hierar-
chy—they have no other meaning. Square brack-
ets are mandatory when the object names
contain spaces, but optional otherwise. For
example, [Forms]![frmCourses]![Dept-

Code] is identical to Forms!frm-

Courses!DeptCode .
Quotation marks “ ” — Double quotation marks
are used to distinguish literal strings from names
of variables, fields, etc. For example,
x = “COMM” means that the variable x is equal
to the string of characters COMM. In contrast,

x =

the va
• Single

marks
quota
marks
x = “[P

variab
“123”
evalu
doubl
doubl
tID] =

and A
• The A

caten
to Mic
tor joi
string

Tutorial exercises14

NextHome Previous 15 o f 22

If
un
te

14

Th
fo
th
us
na
ta
jo
ab

e a calculated field called Title using the
ing expression (see Figure 14.5):

DLookUp(“Title”, “Courses”,
ptCode = ‘”& [DeptCode] & “’ AND
Num = ‘” & [CrsNum] & “’”)

Understanding the WHERE clause

two parameters of the DLookUp() are
rward: they give the name of the field and
 containing the information of interest. How-
 third argument (i.e., the WHERE clause) is

plex and requires closer examination.

e, this WHERE clause is similar to the one
ted in Section 5.3.2 in that it contains two
owever, there are two important differ-

 it is a DLookUp() parameter, the entire
e must be enclosed within quotation marks.

eans single and double quotes-within-
s must be used.
. Data Access Objects

x = “one” & “_two” means that the variable
x is equal to the string one_two.

you understand these constructs at this point, then
derstanding the DLookUp() function is just a mat-

r of putting the pieces together one by one.

.3.5.1 Using DLookUp() in queries

e DLookUp() function is extremely useful for per-
rming lookups when no relationship exists between
e tables of interest. In this section, you are going to
e the DLookUp() function to lookup the course
me associated with each section in the Sections

ble. Although this can be done much easier using a
in query, this exercise illustrates the use of vari-
les in function calls.

• Create a new query called qryLookUpTest
based on the Sections table.

• Project the DeptCode , CrsNum, and Section
fields.

• Creat
follow

Title:
“De
Crs

14.3.5.2

The first
straightfo
the table
ever, the
more com

At its cor
you crea
criteria. H
ences:

1. Since
claus
This m
quote

Tutorial exercises14

NextHome Previous 16 o f 22

s DLookUp() .

Use the DLookUp() function to get the
correct course title for each section.
. Data Access Objects

FIGURE 14.5: Create a query that use

Create a query based on the Sections
table only (do not include Courses).� �

Discussion14

NextHome Previous 17 o f 22

2.

In
ca

Sw
va
on

Th
ue

•

•

trWhere in a DLookUp() call.

iscussion

BA versus SQL
tRecords procedure you created in
4.3.3 is interesting since it does essentially
 thing as a select query: it displays a set of

d extend the functionality of the Print-

 subroutine by adding an argument and an
 condition. For example:

rintRecords(strDeptCode as
g)

ntil rsCourses.EOF

ourses!DeptCode = strDeptCode
n

g.Print rsCourses!DeptCode & “ ”
Courses!CrsNum
. Data Access Objects

It contains variable (as opposed to literal) criteria.
For example, [DeptCode] is used instead of
“COMM”. This makes the value returned by the
function call dependent on the current value of
the DeptCode field.

 order to get a better feel for syntax of the function
ll, do the following exercises (see Figure 14.6):

itch to the debug window and define two string
riables (see Section 12.3.1 for more information
 using the debug window):

strDeptCode = “COMM”

strCrsNum = “351”

ese two variables will take the place the field val-
s while you are in the debug window.
Write the WHERE clause you require without the
variables first. This provides you with a template
for inserting the variables.
Assign the WHERE clause to a string variable
called strWhere (this makes it easier to test).

• Use s

14.4 D

14.4.1 V
The Prin

Section 1
the same
records.

You coul
Records

IF-THEN

Sub P
Strin

Do U

If rsC
The

Debu
& rs

Discussion14

NextHome Previous 18 o f 22

 WHERE clause.

Use the variables in the WHERE
clause and assign the expression to a
string variable called strWhere .

�

Write the WHERE clause using literal
criteria first to get a sense of what is
required.

�

To save typing, use strWhere as the
third parameter of the DLookUp()
call.

�

. Data Access Objects

FIGURE 14.6: Examine the syntax of the

Create string variables that refer to valid
values of DeptCode and CrsNum.�

When replacing a literal string with a variable, you
have to stop the quotation marks, insert the variable
(with ampersands on either side) and restart the
quotation marks. This procedure is evident when the
literal and variable version are compared to each other.

Discussion14

NextHome Previous 19 o f 22

Th
ar
la
co

14
Th
qu
gr
de

 QBE are declarative languages because
 programmer) need only tell the computer
 want done, not how to do it. In contrast,
procedural language since you must tell the
r exactly how to extract the records of inter-

 procedural languages are, in general, more
an their declarative counterparts, they rely

eal on knowledge of the underlying struc-
e data. As a result, procedural languages
e inappropriate for end-user development
e ubiquity of declarative languages such as
usiness environments).
. Data Access Objects

End If

rsCourses.MoveNext

Loop

rsCourses.Close

End Sub

is subroutine takes a value for DeptCode as an
gument and only prints the courses in that particu-
r department. It is equivalent to the following SQL
mmand:

SELECT DeptCode, CourseNum FROM
Courses WHERE DeptCode =
strDeptCode

.4.2 Procedural versus Declarative
e difference between extracting records with a
ery language and extracting records with a pro-
amming language is that the former approach is
clarative while the latter is procedural .

SQL and
you (as a
what you
VBA is a
compute
est.

Although
flexible th
a great d
ture of th
tend to b
(hence th
SQL in b

Application to the assignment14

NextHome Previous 20 o f 22

14

14

W
Se
fo
al
ha
ap
ta
ba

St
pr
Pr

ro
m

lt, it is possible to cheat a little bit and cre-
nd-alone table (e.g., SystemVariables)
ains a single record:

e, other system-wide variables could be
d in this table, but one is enough for our pur-
he important thing about the SystemVari-

ble is that it has absolutely no relationship
other table. As such, you must use a
() to access this information.
e a table that contains information about the
te.
ce the hard-coded tax rate information in
pplication with references to the value in

ble (i.e., use a DLookUp() in your tax cal-
ons). Although the SystemVariables
only contains one record at this point, you

iableName Value

GST 0.07
. Data Access Objects

.5 Application to the assignment

.5.1 Using a separate table to store
system parameters

hen you calculated the tax for the order in
ction 9.5, you “hard-coded” the tax rate into the

rm. If the tax rate changes, you have to go through
l the forms that contain a tax calculation, find the
rd-coded value, and change it. Obviously, a better
proach is to store the tax rate information in a

ble and use the value from the table in all form-
sed calculations.

rictly speaking, the tax rate for each product is a
operty of the product and should be stored in the
oducts table. However, in the wholesaling envi-
nment used for the assignment, the assumption is
ade that all products are taxed at the same rate.

As a resu
ate a sta
that cont

Of cours
containe
poses. T
ables ta
with any
DLookUp

• Creat
tax ra

• Repla
your a
the ta
culati
table

Var

Application to the assignment14

NextHome Previous 21 o f 22

14

An
re
ba
ul
cu

on you must use a DLookUp() to get this
on is that there is no relationship between
rDetails and BackOrders tables.

y relationship that you manage to create
tween OrderDetails and BackOrders
ll be nonsensical and result in a non-updat-
le recordset.

 query underlying your OrderDetails
rm, create a calculated field called QtyOn-

rder to determine the number of items on
rder for each item added to the order. This

lated field will use the DLookUp() function.

e two differences between this DLookUp()
ne you did in Section 14.3.5.1

of the variables used in the function (e.g.,
D and ProductID) are not in the query.
ch, you will have to use a join to bring the
. Data Access Objects

should use an appropriate WHERE clause to
ensure that the value for GST is returned (if no
WHERE clause is provided, DLookUp() returns
the first value in the table).

The use of a table such as SystemVari-

ables contradicts the principles of relational
database design (we are creating an attribute
without an entity). However, trade-offs
between theoretical elegance and practicality
are common in any development project.

.5.2 Determining outstanding
backorders

 good example in your assignment of a situation
quiring use of the DLookUp() is determining the
ckordered quantity of a particular item for a partic-

ar customer. You need this quantity in order to cal-
late the number of each item to ship.

The reas
informati
the Orde

An
be
wi
ab

• In the
subfo
BackO

backo
calcu

There ar
and the o

1. Both
CustI

As su

Application to the assignment14

NextHome Previous 22 o f 22

2.
To do this, use the iif() and IsNull()
ons, e.g.:

nBackOrderNoNull:
Null([QtyOnBackOrder]),0,[Qty
ackOrder])

his “clean” version in your calculations and
ur form.

is possible to combine these two calculated
lds into a one-step calculation, e.g.:
IsNull(DLookUp(…)),0,

ookUp(…)) .
e problem with this approach is that the
ookUp() function is called twice: once to

st the conditional part of the immediate if
atement and a second time to provide the
lse” part of the statement. If the Back-

rders table is very large, this can result in
 unacceptable delay when displaying data

 the form.
. Data Access Objects

missing information into the query.
ProductID is a text field and the criteria of text
fields must be enclosed in quotation marks, e.g.:
ProductID = “123”

However, CustID is a numeric field and the crite-
ria for numeric fields is not enclosed in quotations
marks, e.g.:
CustID = 4 .

Not every combination of CustID and Pro-

ductID will have an outstanding backorder.
When a matching records is not found, the
DLookUp() function returns a special value:
Null . The important thing to remember is
that Null plus or minus anything equals
Null . This has implications for your “quantity
to ship” calculation.

• Create a second calculated field in your query to
convert any Null s in the first calculated field to

zero.
functi

QtyO
iif(Is
OnB

• Use t
on yo

It
fie
iif(

DL

Th
DL

te
st
“fa
O

an
in

	14.1 Introduction: What is the DAO hierarchy?
	14.1.1 DAO basics
	14.1.2 Properties and methods
	14.1.3 Engines, workspaces, etc.

	14.2 Learning objectives
	14.3 Tutorial exercises
	14.3.1 Setting up a database object
	14.3.2 Creating a Recordset object
	14.3.3 Using a Recordset object
	14.3.4 Using the FindFirst method
	14.3.5 The DLookUp() function

	14.4 Discussion
	14.4.1 VBA versus SQL
	14.4.2 Procedural versus Declarative

	14.5 Application to the assignment
	14.5.1 Using a separate table to store system para...
	14.5.2 Determining outstanding backorders

