
NextHome Previous 1 o f 26

n Pro grammin g

 entry is complete, the inventory update
s executed, and so on.

iven programming, graphical user interfaces
nd object-orientation are all related since
e those created in Tutorial 6) and the
l interface objects on the forms serve as the
for the entire application. To create an
ven application, the programmer creates
grams and attaches them to events associ-
 objects, as shown in Figure 13.1. In this
behavior of the application is determined by
ction of a number of small manageable pro-
ther than one large program.
© Michael
Last updat

13.1 In
dr

In conve
ations fo
controllin
event-dri
tions for
interactio
menus, b

For exam
that exec
data veri
update m
in the ba
a value in
program
Brydon (brydon@unixg.ubc.ca)
e: 25-Aug-1997

Access Tutorial 13: Event-Drive
Usin g Macros

troduction: What is event-
iven programming?

ntional programming, the sequence of oper-
r an application is determined by a central
g program (e.g., a main procedure). In
ven programming, the sequence of opera-
an application is determined by the user’s
n with the application’s interface (forms,
uttons, etc.).

ple, rather than having a main procedure
utes an order entry module followed by a
fication module followed by an inventory
odule, an event-driven application remains

ckground until certain events happen: when
 a field is modified, a small data verification
is executed; when the user indicates that

the order
module i

Event-dr
(GUIs), a
forms (lik
graphica
skeleton
event-dri
small pro
ated with
way, the
the intera
grams ra

troduction: What is event-driven programming?13

NextHome Previous 2 o f 26

Triggers
ents on forms “trigger” actions, event/proce-
binations are sometimes called triggers .

ple, the action query you attached to a but-
ction 11.3.5 is an example of a simple, one-
gger. However, since an action query can
orm one type of action, and since you typi-
e a number of actions that need to be per-

acros or Visual Basic procedures are
used to implement a triggers in Access.

he Access macro language
iscovered in Tutorial 12, writing simple VBA
 is not difficult, but it is tedious and error-
rthermore, as you will see in Tutorial 14,
ramming becomes much more difficult
 have to refer to objects using the naming
ns of the database object hierarchy. As a

ence, even experienced Access program-
In. Event-Driven Programming Using Macros

13.1.1
Since ev
dure com

For exam
ton in Se
action tri
only perf
cally hav
formed, m
typically

13.1.2 T
As you d
programs
prone. Fu
VBA prog
when you
conventio
consequ

properties

events

interface object
cmdUpdateCredits

Caption
Enabled
...

On Click
On Got Focus
...

procedure

FIGURE 13.1: In a trigger, a procedure is
attached to an event.

An object, such as the
button created in
Section 11.3.5, has
predefined properties and
events. For a button, the
most important event is
On Click.

A procedure (such as an
action query, macro, or VBA
function or subroutine) can be
attached to an event. When
the event occurs, the
procedure is executed.

Learning objectives13

NextHome Previous 3 o f 26

m
im

Th
m
gu
le
ed
m

13
To
tio

1.
2.

O
yo
cu
an

e procedure to the correct event of the cor-
ct.

lecting the correct object and the correct
ent for a trigger is often the most difficult
rt of creating an event-driven application. It
best to think about this carefully before you
t too caught up in implementing the proce-
re.

arning objectives
hat is event-driven programming? What is a
gger?

w do I design a trigger?

w does the macro editor in Access work?

w do I attach a macro to an event?

hat is the SetValue action? How is it used?
. Event-Driven Programming Using Macros

ers often turn to the Access macro language to
plement basic triggers.

e macro language itself consists of 40 or so com-
ands. Although it is essentially a procedural lan-
age (like VBA), the commands are relatively high

vel and easy to understand. In addition, the macro
itor simplifies the specification of the action argu-

ents (parameters).

.1.3 The trigger design cycle
 create a trigger, you need to answer two ques-
ns:

What has to happen?
When should it happen?

nce you have answered the first question (“what”),
u can create a macro (or VBA procedure) to exe-
te the necessary steps. Once you know the
swer to the second question (“when”), you can

attach th
rect obje

Se
ev
pa
is
ge
du

13.2 Le
� W

tri

� Ho

� Ho

� Ho

� W

Tutorial exercises13

NextHome Previous 4 o f 26

13
In
tri
th
in

he basics of the macro editor
ction, you are going to eliminate the warn-
ages that precede the trigger you created
1.3.5.

 the answer to the “what” question is the fol-

off the warnings so the dialog boxes do not
p when the action query is executed;
he action query; and,
the warnings back on (it is generally good
amming practice to return the environment
original state).

umber of things have to happen, you can-
n an action query by itself. You can, how-
cute a macro that executes several actions
 one or more action queries.
. Event-Driven Programming Using Macros

� How do I make the execution of particular
macro actions conditional?

� What is a switchboard and how do I create
one for my application?

� How to I make things happen when the
application is opened?

� What are the advantages and disadvantages
of event-driven programming?

.3 Tutorial exercises
 this tutorial, you will build a number of very simple
ggers using Access macros. These triggers, by
emselves, are not particularly useful and are
tended for illustrative purposes only.

13.3.1 T
In this se
ing mess
Section 1

As such,
lowing:

1. Turn
pop u

2. Run t
3. Turn

progr
to its

Since a n
not rely o
ever, exe
including

Tutorial exercises13

NextHome Previous 5 o f 26

13
Th
cm

al
ne
m

 13.4: Bring up the On Click property for
the button.

The button wizard attached a
VBA procedure to the button.
. Event-Driven Programming Using Macros

• Select the Macros tab from the database window
and press New. This brings up the macro editor
shown in Figure 13.2.

• Add the three commands as shown in
Figure 13.3. Note that the OpenQuery command
is used to run the action query.

• Save the macro as mcrUpdateCredits and
close it.

.3.2 Attaching the macro to the event
e answer to the “when” question is: When the
dUpdateCredits button is pressed. Since you

ready created the button in Section 11.3.5, all you
ed to do is modify its On Click property to point the

crUpdateCredits macro.
• Open frmDepartments in design mode.
• Bring up the property sheet for the button and

scroll down until you find the On Click property,
as shown in Figure 13.4.

FIGURE

Tutorial exercises13

NextHome Previous 6 o f 26

ditor.

In the comment column, you can
document your macros as required
. Event-Driven Programming Using Macros

FIGURE 13.2: The macro e

Macro actions can be selected from a list. The
SetWarnings command is used to turn the warning
messages (e.g., before you run an action query) on and off.

Most actions have one or
more arguments that
determine the specific
behavior of the action. In
this case, the
SetWarnings action is
set to turn warnings off.

The area on the right
displays information about
the action.

Multiple commands are
executed from top to
bottom.

Tutorial exercises13

NextHome Previous 7 o f 26

the “what” question.

�

�

. Event-Driven Programming Using Macros

FIGURE 13.3: Create a macro that answers

Add the three commands to
the macro.

The arguments for the two
SetWarnings actions
are straightforward. For the
OpenQuery command,
you can select the query to
open (or run) from a list.
Since this is an action
query, the second and third
arguments are not
applicable.

Tutorial exercises13

NextHome Previous 8 o f 26

•

•

 13.5: Select the macro to attach to the
On Click property.

Press the arrow to get a list
of available macros�
. Event-Driven Programming Using Macros

• Press the builder button () beside the existing
procedure and look at the VBA subroutine cre-
ated by the button wizard. Most of this code is for
error handling.

Unlike the stand-along VBA modules you cre-
ated in Tutorial 12, this module (collection of
functions and subroutines) is embedded in
the frmDepartments form.

Since you are going to replace this code with a
macro, you do not want it taking up space in your
database file. Highlight the text in the subroutine
and delete it. When you close the module win-
dow, you will see the reference to the “event pro-
cedure” is gone.
Bring up the list of choice for the On Click prop-
erty as shown in Figure 13.5. Select mcrUp-

dateCredits .

FIGURE

Tutorial exercises13

NextHome Previous 9 o f 26

13

Si
up
of
al

To
ta

 modify the structure of the table until the
ery or form is closed.

e Caption property to Credits updated?
e Default property to No as shown in

e 13.6.

 made to a table do not automatically carry
rms already based on that table. As such,

t manually add the new field to the depart-
rm.
 frmDepartments in design mode.
 sure the toolbox and field list are visible.
e that the new field (CrUpdated) shows up
 field list.
he same technique for creating combo
 to create a bound check box control for the
o field. This is shown in Figure 13.7.
. Event-Driven Programming Using Macros

• Switch to form view and press the button. Since
no warnings appear, you may want to press the
button a few times (you can always use your roll-
back query to reset the credits to their original
values).

.3.3 Creating a check box to display
update status information

nce the warning boxes have been disabled for the
date credits trigger, it may be useful to keep track

 whether courses in a particular department have
ready been updated.

 do this, you can add a field to the Departments
ble to store this “update status” information.
• Edit the Departments table and add a Yes/No

field called CrUpdated .

If you have an open query or form based on
the Departments table, you will not be able

to
qu

• Set th
and th
Figur

Changes
over to fo
you mus
ments fo

• Open
• Make

Notic
in the

• Use t
boxes
yes/n

Tutorial exercises13

NextHome Previous 10 o f 26

13
So
m

on, you are going to use one of the most
mmands—SetValue —to automatically
he value of the CrUpdated check box.
 your mcrUpdateCredits macro in design
 and add a SetValue command to change
rUpdated check box to Yes (or True , if
refer). This is shown in Figure 13.8.
 the macro and press the button on the form.
e that the value of the check box changes,
ding you not to update the courses for a
ular department more than once.

Creating conditional macros
an relying on the user not to run the update
 check box is checked, you may use a con-
acro to prevent an update when the

x is checked.
. Event-Driven Programming Using Macros

.3.4 The SetValue command
 far, you have used two commands in the Access

acro language: SetWarnings and OpenQuery . In

this secti
useful co
change t

• Open
mode
the C
you p

• Save
Notic
remin
partic

13.3.5
Rather th
when the
ditional m
check bo

FIGURE 13.6: Add a field to the Departments
table to record the status of updates.

Tutorial exercises13

NextHome Previous 11 o f 26

ck of the update status.

Select the check box tool
from the toolbox.�

the

A check box is a control
that can be bound to fields
of the yes/no data type.
When the box is checked,
True is stored in the
table; when the box is
unchecked, False is
stored.
. Event-Driven Programming Using Macros

FIGURE 13.7: Add a check box control to keep tra

Drag the CrUpdated field from
field list to the detail section.�

Tutorial exercises13

NextHome Previous 12 o f 26

of the update status field when the

The Expression argument is the
value you want the SetValue
action to set the value of the Item
to. Type in Yes (no quotation
marks are required since Yes is
recognized as a constant in this
context).

�

. Event-Driven Programming Using Macros

FIGURE 13.8: Add a SetValue command to set the value
update is compete.

Pick the SetValue command
from the list or simply type it in.�

The Item argument is the thing you
want the SetValue action to set the
value of. You can use the builder or
simply type in CrUpdate .

�

Tutorial exercises13

NextHome Previous 13 o f 26

The simplest conditional macro

 an expression in the condition column of a
e action in that row will execute if the condi-
e. If the condition is not true, the action will
d.

 the condition column as shown in
e 13.10. Precede the actions you want to
te if the check box is checked with [CrUp-

] . Precede the actions you do not want to
te with Not [CrUpdated] .

nce CrUpdated is a Boolean (yes/no) vari-
le, you do not need to write [CrUpdated]

True or [CrUpdated] = False . The
e and false parts are implied. However, if a
n-Boolean data type is used in the expres-
n, a comparison operator must be included

.g., [DeptCode] = “COMM” , [Cred-

] < 3 , etc.)
. Event-Driven Programming Using Macros

• Select View > Conditions to display the condi-
tions column in the macro editor as shown in
Figure 13.9.

13.3.5.1

If there is
macro, th
tion is tru
be skippe

• Fill in
Figur
execu
dated

execu

Si
ab
=

tru
no
sio
(e
its

FIGURE 13.9: Display the macro editors
condition column

Select View > Conditions or press the
“conditions” button on the tool bar.�

Tutorial exercises13

NextHome Previous 14 o f 26

ol which actions execute.
. Event-Driven Programming Using Macros

FIGURE 13.10: Create a conditional macro to contr

The expression Not [CrUpdated]
is true if the CrUpdated check box is
not checked. Use this expression in
front of the actions you want to execute
in this situation.

�

The expression [CrUpdated] is
true if the CrUpdated check box is
checked. In this situation, you should
indicate to the user that the update is
not being performed.

�

The MsgBox action displays a
standard Windows message box. You
can set the message and other message
box features in the arguments section.

�

Tutorial exercises13

NextHome Previous 15 o f 26

Refining the conditions

ro shown in Figure 13.10 can be improved
an ellipsis (…) instead of repeating the
ndition in line after line. In this section, you
lify your conditional macro slightly.

 message box action and condition to the
 list of actions by dragging its record selec-
box on the left).
 a new row immediately following the mes-
and add a StopMacro action, as shown in
e 13.12.

ro in Figure 13.12 executes as follows: If
 is true (i.e., the box is checked), the

action executes. Since the next line has an
 the condition column, the condition contin-
ply. However, that action on the ellipsis line
acro , and thus the macro ends without
 the next four lines.

F

. Event-Driven Programming Using Macros

• Switch to the form and test the macro by pressing
the button. If the CrUpdated check box is
checked, you should get a message similar to
that shown in Figure 13.11.

13.3.5.2

The mac
by using
same co
will simp

Move the
top of the
tor (grey

• Insert
sage
Figur

The mac
CrUpdate

MsgBox
ellipsis in
ues to ap
is StopM

executing

IGURE 13.11: The action query is not executed
and the message box appears instead.

Tutorial exercises13

NextHome Previous 16 o f 26

pdate box is not checked, the first two
 ignored (i.e., the lines with the false condi-
the ellipsis) and the update proceeds.

Creating a group of named macros

ible to store a number of related macros
in one macro “module”. These group mac-
 two advantages:

lar macros can be created — instead of
g a large macro with many conditions and
hes, you can create a small macro that call
 small macros.
r macros can be grouped together — for
ple, you could keep all you Departments -
d macros or search-related macros in a
 group.

ction, we will focus on the first advantage.
t View > Macro Names to display the macro
 column.

FI
. Event-Driven Programming Using Macros

If the CrU

lines are
tion and

13.3.5.3

It is poss
together
ros have

1. Modu
havin
branc
other

2. Simila
exam
relate
macro

In this se
• Selec

name

GURE 13.12: Rearrange the macro actions and
insert a new row.

Click the record selector and drag the
message box action to the top of the list.�

Right-click where you would like
to insert a new row and select
Insert Row from the popup menu.

�

Add an ellipsis
(…) and a
StopMacro
action.

�

Tutorial exercises13

NextHome Previous 17 o f 26

13
O
O

co

Th
Fi
na

•

ve the scroll bars, navigation buttons, and
d selectors from the form using the form’s
rty sheet.
 the form as swbMain .

 two ways to add button-based triggers to a

the button wizard off, create the button, and
 an macro containing the appropriate
 (or actions).

the button wizard on and use the wizard to
t from a list of common actions (the wizard
 a VBA procedure for you).

nce the wizard can only attach one action to
button (such as opening a form or running
 action query) it is less flexible than a

acro. However, once you are more comfort-
le with VBA, there is nothing to stop you
. Event-Driven Programming Using Macros

• Perform the steps in Figure 13.13 to modularize
your macro.

• Change the macro referred to in the On Click
property of the cmdUpdateCredits button from
mcrUpdateCredits to
mcrUpdateCredits.CheckStatus .

• Test the operation of the button.

.3.6 Creating switchboards
ne of the simplest (but most useful) triggers is an
penForm command attached to a button on a form
nsisting exclusively of buttons.

is type of “switchboard” (as shown in
gure 13.14) can provide the user with a means of
vigating the application.
Create an unbound form as shown in
Figure 13.15.

• Remo
recor
prope

• Save

There are
form:

1. Turn
attach
action

2. Turn
selec
writes

Si
a
an
m
ab

Tutorial exercises13

NextHome Previous 18 o f 26

ularize the macro.

 macro executes until it encounters a
lank line. Use blank lines to separate the
amed macros within a group.
. Event-Driven Programming Using Macros

FIGURE 13.13: Use named macros to mod

Select View > Macro Names to display
the macro names column.�

Create a named macro called
CheckStatus that contains the
conditional logic for the procedure.

�

The RunMacro action executes a
particular macro. Select the macro to
execute from a list in the arguments pane.
Note the naming convention for macros
within a macro group.

�

Create two other macros, Updated and
NotUpdated that correspond to the
logic in the CheckStatus macro.

�

A
b
n

Tutorial exercises13

NextHome Previous 19 o f 26

 the application.

tcut keys are include on each
n to allow the user to navigate
pplication with keystrokes.

gh it is not shown here, switchboards can
er switchboards, allowing you to add a
hical structure to your application.
. Event-Driven Programming Using Macros

FIGURE 13.14: A switchboard interface to

The command buttons are placed on an
unbound form. Note the absence of scroll bars,
record selectors, or navigation buttons.

Gratuitous clip art can be used to
clutter your forms and reduce the
application’s overall performance.

Shor
butto
the a

Althou
call oth
hierarc

Tutorial exercises13

NextHome Previous 20 o f 26

E 13.15: Create an unbound form as the
switchboard background.

Select Design View (no wizard) and
leave the “record source” box empty.�

The result is a blank form on which
you can build your switchboard.�
. Event-Driven Programming Using Macros

FIGUR

Tutorial exercises13

NextHome Previous 21 o f 26

13

•

13

 the directions provided by the wizard to
e action for the button (i.e., open the frm-

es form) as shown in Figure 13.17.
ge the button’s font and resize it as
ed.

u can standardize the size of your form
jects by selecting more than one and using
rmat > Size > to Tallest and to Widest com-

ands. Similarly, you can select more than
e object and use the “multiple selection”
operty sheet to set the properties all at
ce.

Using an autoexec macro
e the name autoexec to save a macro (in
e normal mcr<name> convention), Access
ute the macro actions when the database is
Consequently, auto-execute macros are
. Event-Driven Programming Using Macros

from editing the VBA modules created by the
wizard to add additional functionality.

.3.6.1 Using a macro and manually-created
buttons

• Ensure the wizard is turned off and use the but-
ton tool to create a button.

• Modify the properties of the button as shown in
Figure 13.16.

• Create a macro called
mcrSwitchboard.OpenDept and use the
OpenForm command to open the form frmDe-

partments .
Attach the macro to the On Click event of the
cmdDepartments button.

• Test the button.

.3.6.2 Using the button wizard
• Turn the button wizard back on and create a new

button.

• Follow
set th
Cours

• Chan
requir

Yo
ob
Fo
m
on
pr
on

13.3.7
If you us
lieu of th
will exec
opened.

Tutorial exercises13

NextHome Previous 22 o f 26

fy its appearance.

Give the button a meaningful name
(e.g., cmdDepartments) and caption
(including a shortcut key.).

�

e

.

. Event-Driven Programming Using Macros

FIGURE 13.16: Create a button and modi

Use the button tool to create a button
(ensure the wizard activated).�

Scroll down the property sheet and chang
the value of the button’s Font Size property.
Resize the button by dragging its handles

�

Tutorial exercises13

NextHome Previous 23 o f 26

e a button for the switchboard.

rm as
 button.

ect form

Provide a caption
for the button.�
. Event-Driven Programming Using Macros

FIGURE 13.17: Use the command button wizard to creat

Select Form Operations > Open Fo
the action type associated with the�

Select the corr
from the list.�

Tutorial exercises13

NextHome Previous 24 o f 26

of
st

An
da
sc
m
da

Th
a
co
yo
Ite

As
fo

menu system. Consequently, you need to
ething about the menu structure of Access

u create your macro.

 version 8.0, the DoMenuItem action has
en replaced by the slightly more intuitive
nCommand action. See on-line help for

ore information on RunCommand.

e an auto-execute macro
he DoMenuItem and OpenForm actions to
he database window and open the main
board, as shown in Figure 13.18.
 the database and reopen it after a short
 to test the macro.

 version 7.0 and above, you do not need to
e an autoexec macro to hide the database
ndow and open a form. Instead, you can
ht-click on the database window, select
. Event-Driven Programming Using Macros

ten used to display a switchboard when the user
arts the application.

other typical auto-execute operation is to hide the
tabase window. By doing this, you unclutter the
reen and reduce the risk of a user accidentally
aking a change to the application (by deleting a
tabase object, etc.).

To unhide the database window, select Win-
dow > Unhide from the main menu or press
the database window icon () on the toolbar.

e problem with hiding the database window using
macro is that there is no HideDatabaseWindow
mmand in the Access macro language. As such,
u have to rely on the rather convoluted DoMenu-

m action.

 its name suggests, the DoMenuItem action per-
rms an operation just as if it had been selected

from the
know som
before yo

In
be
Ru

m

• Creat
• Add t

hide t
switch

• Close
delay

In
us
wi
rig

�

Discussion13

NextHome Previous 25 o f 26

iscussion

vent-driven programming versus
conventional programming
ary advantages of event-driven program-
 the following:

ility — since the flow of the application is
lled by events rather than a sequential pro-

, the user does not have to conform to the
ammer’s understanding of how tasks should
ecuted.
stness — Event-driven applications tend to
re robust since they are less sensitive to
der in which users perform activities. In
ntional programming, the programmer has
icipate virtually every sequence of activities
er might perform and define responses to

 sequences.
. Event-Driven Programming Using Macros

Startup, and fill in the properties for the appli-
cation.

13.4 D

13.4.1 E

The prim
ming are

1. Flexib
contro
gram
progr
be ex

2. Robu
be mo
the or
conve
to ant
the us
these

FIGURE 13.18: Create an auto-execute macro.

For the DoMenuItem action, select the
Window > Hide commands from the
Database menu (i.e., the menu that is active
when the database window is being used).

�

Application to the assignment13

NextHome Previous 26 o f 26

Th
is
wh
ob
sin
yo
be
Th
ev
ob

13

e a main switchboard for you application. It
d provide links to all the database objects
ser is expected to have access to (i.e., your
).
. Event-Driven Programming Using Macros

e primary disadvantage of event-driven programs
that it is often difficult to find the source of errors
en they do occur. This problem arises from the
ject-oriented nature of event-driven applications—
ce events are associated with a particular object
u may have to examine a large number of objects
fore you discover the misbehaving procedure.
is is especially true when events cascade (i.e., an
ent for one object triggers an event for a different
ject, and so on).

.5 Application to the assignment
• Add “update status” check boxes to you transac-

tion processing forms (i.e., Orders and Ship-

ments)
• Create a conditional macro for your Shipments

form to prevent a particular shipment from being
added to inventory more than once.

• Creat
shoul
your u
forms

	13.1 Introduction: What is event- driven programmi...
	13.1.1 Triggers
	13.1.2 The Access macro language
	13.1.3 The trigger design cycle

	13.2 Learning objectives
	13.3 Tutorial exercises
	13.3.1 The basics of the macro editor
	13.3.2 Attaching the macro to the event
	13.3.3 Creating a check box to display update stat...
	13.3.4 The SetValue command
	13.3.5 Creating conditional macros
	13.3.6 Creating switchboards
	13.3.7 Using an autoexec macro

	13.4 Discussion
	13.4.1 Event-driven programming versus conventiona...

	13.5 Application to the assignment

