
NextHome Previous 1 o f 16

n to Visual Basic

ple programs we are writing here, these
rms are interchangeable.

Interacting with the interpreter
rovides two ways of interacting with the
uage. The most useful of these is through

odules that contain VBA procedures. These
es (subroutines and functions) can be run to
sting things like process transactions
aster tables, provide sophisticated error

, and so on.

nd way to interact with VBA is directly
he interpreter. Interpreted languages are
 experiment with since you can invoke the
r at any time, type in a command, and
xecute. In the first part of this tutorial, you
 to invoke Access’ VBA interpreter and exe-
e very simple statements.
© M
Last

12.

Pro
diffi
eith
the
of p
gen
App
ichael Brydon (brydon@unixg.ubc.ca)
 update: 25-Aug-1997

Access Tutorial 12: An Introductio

1 Introduction: Learning the
basics of programming

gramming can be an enormously complex and
cult activity. Or it can be quite straightforward. In
er case, the basic programming concepts remain
same. This tutorial is an introduction to a handful
rogramming constructs that apply to any “third
eration” language, not only Visual Basic for
lications (VBA).

Strictly speaking, the language that is
included with Access is not Visual Basic—it is
a subset of the full, stand-alone Visual Basic
language (which Microsoft sells separately).
In Access version 2.0, the subset is called
“Access Basic”. In version 7.0, it is slightly
enlarged subset called “Visual Basic for Appli-
cations” (VBA). However, in the context of the

sim
te

12.1.1
Access p
VBA lang
saved m
procedur
do intere
against m
checking

The seco
through t
easier to
interprete
watch it e
are going
cute som

Learning objectives12

NextHome Previous 2 o f 16

In
cr
co

12

torial exercises

nvoking the interpreter
on the module tab in the database window
ress New.

ns the module window which we will use in
2.3.3. You have to have a module window
rder for the debug window to be available
menu.
t View > Debug Window from the main
. Note that Control-G can be used in ver-
.0 and above as a shortcut to bring up the
 window.

 version 2.0, the “debug” window is called
e “immediate” window. As such, you have to
e View > Immediate Window. The term
bug window will be used throughout this

torial.
. An Introduction to Visual Basic

 the second part of the tutorial, you are going to
eate a couple of VBA modules to explore looping,
nditional branching, and parameter passing.

.2 Learning objectives
� What is the debug/immediate window? How

do I invoke it?

� What are statements, variables, the
assignment operator, and predefined
functions?

� How do I create a module containing VBA
code?

� What are looping and conditional branching?
What language constructs can I use to
implement them?

� How do I use the debugger in Access?

� What is the difference between an interpreted
and compiled programming language?

12.3 Tu

12.3.1 I
• Click

and p

This ope
Section 1
open in o
from the

• Selec
menu
sion 7
debug

In
th
us
de
tu

�

Tutorial exercises12

NextHome Previous 3 o f 16

12
In
do

12

St
la
ex
ex

(th
Re

Variables and assignment

e is space in memory to which you assign a
hen you use the variable name in expres-
 programming language replaces the vari-
e with the contents of the space in memory
rticular instant.
the following:
ello” ↵

 “ world” ↵
& “ world” ↵

t statement, a variable s is created and the
llo is assigned to it. Recall the function of
atenation operator (&) from Section 4.4.2.

ntrary to the practice in languages like C
d Pascal, the equals sign (=) is used to
sign values to variables. It is also used as
e equivalence operator (e.g., does x = y ?).
. An Introduction to Visual Basic

.3.2 Basic programming constructs
 this section, we are going to use the debug win-
w to explore some basic programming constructs.

.3.2.1 Statements

atements are special keywords in a programming
nguage that do something when executed. For
ample, the Print statement in VBA prints an
pression on the screen.

• In the debug window, type the following:
Print “Hello world!” ↵

e ↵ symbol at the end of a line means “press the
turn or Enter key”).

In VBA (as in all dialects of BASIC), the ques-
tion mark (?) is typically used as shorthand for
the Print statement. As such, the statement:
? “Hello world!” ↵ is identical to the
statement above.

12.3.2.2

A variabl
name. W
sions, the
able nam
at that pa

• Type
s = “H

? s &

? “s”

In the firs
string He

the conc

Co
an
as
th

Tutorial exercises12

NextHome Previous 4 o f 16

W
ni
in
its
m
so

12

In
gr
et
a

ion that is provided as part of the program-
ironment.

ple, cos(x) is a predefined function in
puter languages—it takes some number x

ument, does some processing to find its
nd returns the answer. Note that since this
is predefined, you do not have to know any-
ut the algorithm used to find the cosine, you
 to know the following:

to supply as inputs (e.g., a valid numeric
ssion representing an angle in radians),
to expect as output (e.g., a real number
en -1.0 and 1.0).

e on-line help system provides these two
eces of information (plus a usage example
d some additional remarks) for all VBA pre-
fined functions.
. An Introduction to Visual Basic

hen the second statement is executed, VBA recog-
zes that s is a variable, not a string (since it is not
 quotations marks). The interpreter replaces s with
 value (Hello) before executing the Print com-
and. In the final statement, s is in quotation marks
 it is interpreted as a literal string .

Within the debug window, any string of char-
acters in quotations marks (e.g., “COMM”) is
interpreted as a literal string. Any string with-
out quotation marks (e.g., COMM) is interpreted
as a variable (or a field name, if appropriate).
Note, however, that this convention is not uni-
versally true within different parts of Access.

.3.2.3 Predefined functions

 computer programming, a function is a small pro-
am that takes one or more arguments (or param-
ers) as input, does some processing, and returns
value as output. A predefined (or built-in) function

is a funct
ming env

For exam
many com
as an arg
cosine, a
function
thing abo
just have

1. what
expre

2. what
betwe

Th
pi
an
de

Tutorial exercises12

NextHome Previous 5 o f 16

In
pr
te
Fi

12

W
pr
do
ex

E 12.1: Interacting with the Visual Basic
interpreter.

The argument contains
an expression.

UCase() converts a
string to uppercase.

Mid() extracts
characters from the
string defined earlier.
. An Introduction to Visual Basic

 this section, we are going to explore some basic
edefined functions for working with numbers and
xt. The results of these exercises are shown in
gure 12.1.
• Print the cosine of 2π radians:

pi = 3.14159 ↵
? cos(2*pi) ↵

• Convert a string of characters to uppercase:
s = “basic or cobol” ↵
? UCase(s) ↵

• Extract the middle six characters from a string
starting at the fifth character:
? mid (s,5,6) ↵

.3.2.4 Remark statements

hen creating large programs, it is considered good
ogramming practice to include adequate internal
cumentation—that is, to include comments to
plain what the program is doing.

FIGUR

Tutorial exercises12

NextHome Previous 6 o f 16

Co
th
us

Th
ca

12

Th
O

O

ar
Co

re compared (e.g., does uppercase/ lower-
tter?). The Option Explicit statement
u to declare all your variables before using

 version 2.0, Access does not add the
ption Explicit statement by default. As
ch you should add it yourself.

 12.2: The declarations page of a Visual
Basic module.
. An Introduction to Visual Basic

mment lines are ignored by the interpreter when
e program is run. To designate a comment in VBA,
e an apostrophe to start the comment, e.g.:

‘ This is a comment line!

Print “Hello” ‘the comment starts
here

e original REM (remark) statement from BASIC
n also be used, but is less common.

REM This is also a comment (remark)

.3.3 Creating a module
• Close the debug window so that the declaration

page of the new module created in
Section 12.3.3 is visible (see Figure 12.2).

e two lines:
ption Compare Database

ption Explicit

e included in the module by default. The Option

mpare statement specifies the way in which

strings a
case ma
forces yo
them.

In
O

su

FIGURE

�

Tutorial exercises12

NextHome Previous 7 o f 16

A
m
fu
tin
cu
va
fu
us
th

Creating subroutines with looping
and branching
ction, you will explore two of the most pow-
structs in computer programming: looping
itional branching .
e a new subroutine by typing the following
here on the declarations page:
oopingTest() ↵

at Access creates a new page in the mod-
e subroutine, as shown in Figure 12.3.

Declaring variables

u declare a variable, you tell the program-
ironment to reserve some space in memory
riable. Since the amount of space that is
is completely dependent on the type of data
ble is going to contain (e.g., string, integer,
 double-precision floating-point, etc.), you

�

. An Introduction to Visual Basic

module contains a declaration page and one or
ore pages containing subroutines or user-defined
nctions . The primary difference between subrou-
es and functions is that subroutines simply exe-
te whereas functions are expected to return a
lue (e.g., cos()). Since only one subroutine or
nction shows in the window at a time, you must
e the Page Up and Page Down keys to navigate
e module.

The VBA editor in version 8.0 has a number of
enhancements over earlier version, including
the capability of showing multiple functions
and subroutines on the same page.

12.3.4

In this se
erful con
and cond

• Creat
anyw
Sub L

Notice th
ule for th

12.3.4.1

When yo
ming env
for the va
required
the varia
Boolean,

Tutorial exercises12

NextHome Previous 8 o f 16

ha
tio

In
ab

•

 the module as basTesting .

e most useful looping constructs is For

n>... Next . All statements between
nd Next parts are repeated as long as the
n> part is true. The index i is automati-
emented after each iteration.
 the remainder of the LoopingTest pro-
:

oop number: ”

= 1 To 10

bug.Print s & i

i

 the module.

is customary in most programming lan-
ages to use the Tab key to indent the ele-

ents within a loop slightly. This makes the
ogram more readable.
. An Introduction to Visual Basic

ve to include data type information in the declara-
n statement.

 VBA, you use the Dim statement to declare vari-
les.
Type the following into the space between the
Sub... End Sub pair:

Dim i as integer

Dim s as string

• Save

One of th
<conditio

the For a
<conditio

cally incr
• Enter

gram

s = “L

For i

De

Next

• Save

It
gu
m
pr

FIGURE 12.3: Create a new subroutine.

You can use the procedure
combo box to switch between
procedures in a module.

Tutorial exercises12

NextHome Previous 9 o f 16

No
is
en
de

12

No
ru
sim

•

12

W
<c

br
El

URE 12.4: Run the LoopingTest
ubroutine in the debug window.

nvoke the LoopingTest subroutine
y typing its name in the debug window.
. An Introduction to Visual Basic

te that the Print statement within the subroutine
prefaced by Debug. This is due to the object-ori-
ted nature of VBA which will be explored in greater
tail in Tutorial 14.

.3.4.2 Running the subroutine

w that you have created a subroutine, you need to
n it to see that it works. To invoke a subroutine, you

ply use its name like you would any statement.
• Select View > Debug Window from the menu (or

press Control-G in version 7.0).
Type: LoopingTest ↵ in the debug window, as
shown in Figure 12.4.

.3.4.3 Conditional branching

e can use a different looping construct, Do Until

ondition>... Loop , and the conditional
anching construct, If <condition> Then...

se , to achieve the same result.

FIG
s

I
b�

Tutorial exercises12

NextHome Previous 10 o f 16

he program

sing the debugger
rovides a rudimentary debugger to help you
ugh your programs and understand how
executing. The two basic elements of the
r used here are breakpoints and stepping
ine execution).
 to the s = “Loop number: ” line in your
hingTest subroutine and select Run >
e Breakpoint from the menu (you can also
 F9 to toggle the breakpoint on a particular
f code).

 the line becomes highlighted, indicating the
 of an active breakpoint. When the program
ill suspend execution at this breakpoint and
trol of the program back to you.
. An Introduction to Visual Basic

• Type the following anywhere under the End Sub
statement in order to create a new page in the
module:

Sub BranchingTest ↵
• Enter the following program:

Dim i As Integer

Dim s As String

Dim intDone As Integer

s = “Loop number: “

i = 1

intDone = False

Do Until intDone = True

If i > 10 Then

Debug.Print “All done”

intDone = True

Else

Debug.Print s & i

i = i + 1

End If

Loop

• Run t

12.3.5 U
Access p
step thro
they are
debugge
(line-by-l

• Move
Branc

Toggl
press
line o

Note that
presence
runs, it w
pass con

Tutorial exercises12

NextHome Previous 11 o f 16

By
us
us
ab

12
In
at
m
ish
de
pa

E 12.5: Execution of the subroutine is
suspended at the breakpoint.

The outlined box indicates the
current location of the
interpreter in the program. Press
F8 to execute the line of code.
. An Introduction to Visual Basic

• Run the subroutine from the debug window, as
shown in Figure 12.5.

• Step through a couple of lines in the program
line-by-line by pressing F8.

 stepping through a program line by line, you can
ually find any program bugs. In addition, you can
e the debug window to examine the value of vari-
les while the program’s execution is suspended.

• click on the debug window and type
? i ↵
to see the current value of the variable i .

.3.6 Passing parameters
 the BranchingTest subroutine, the loop starts
 1 and repeats until the counter i reaches 10. It
ay be preferable, however, to set the start and fin-
 quantities when the subroutine is called from the
bug window. To achieve this, we have to pass
rameters (or arguments) to the subroutine.

FIGUR

Tutorial exercises12

NextHome Previous 12 o f 16

Th
an
pa
ro
de

no
in

ex
te

To
ca
in

E 12.6: Highlight the code to copy it.
. An Introduction to Visual Basic

e main difference between passed parameters
d other variables in a procedure is that passed
rameters are declared in the first line of the sub-
utine definition. For example, following subroutine
claration

Sub BranchingTest(intStart as
Integer, intStop as Integer)

t only declares the variables intStart and
tStop as integers, it also tells the subroutine to
pect these two numbers to be passed as parame-
rs.

 see how this works, create a new subroutine
lled ParameterTest based on Branch-

gTest .
• Type the declaration statement above to create

the ParameterTest subroutine.
• Switch back to BranchingTest and highlight all

the code except the Sub and End Sub state-
ments, as shown in Figure 12.6.

FIGUR

Tutorial exercises12

NextHome Previous 13 o f 16

To
es

tio

reating the Min() function
ction, you are going to create a user-
unction that returns the minimum of two
. Although most languages supply such a
 Access does not (the Min() and Max()
n Access are for use within SQL statements

e a new module called basUtilities .
the following to create a new function:
ion MinValue(n1 as Single, n2

gle) as Single ↵

es a function called MinValue that returns
recision number. The function requires two

ecision numbers as parameters.

nce a function returns a value, the data type
 the return value should be specified in the
nction declaration. As such, the basic syn-
x of a function declaration is:
. An Introduction to Visual Basic

• Copy the highlighted code to the clipboard (Con-
trol-Insert), switch to ParameterTest , and
paste the code (Shift-Insert) into the Parame-

terTest procedure.

 incorporate the parameters into ParameterT-

t , you will have to make the following modifica-
ns to the pasted code:

• Replace i = 1 with i = intStart .
• Replace i > 10 with i > intStop .
• Call the subroutine from the debug window by

typing:
ParameterTest 4, 12 ↵

If you prefer enclosing parameters in brack-
ets, you have to use the Call <sub

name>(parameter 1, ..., parameter n)
syntax. For example:
Call ParameterTest(4,12) ↵

12.3.7 C
In this se
defined f
numbers
function,
function i
only).

• Creat
• Type

Funct

as Sin

This defin
a single-p
single-pr

Si
of
fu
ta

Discussion12

NextHome Previous 14 o f 16

•

•

iscussion

nterpreted and compiled
languages
n interpreted language . In interpreted lan-
each line of the program is interpreted (con-
to machine language) and executed when
am is run. Other languages (such as C,
ORTRAN, etc.) are compiled , meaning
riginal (source) program is translated and
o a file of machine language commands.
cutable file is run instead of the source

ly, compiled languages run much faster
rpreted languages (e.g., compiled C++ is
 ten times faster than interpreted Java).
, interpreted languages are typically easier
nd experiment with.
. An Introduction to Visual Basic

Function <function

name>(parameter 1 As <data type>,

…, parameter n As <data type>) As

<data type>

The function returns a variable named
<function name> .

Type the following as the body of the function:

If n1 <= n2 Then

MinValue = n1

Else

MinValue = n2

End If

Test the function, as shown in Figure 12.7.

12.4 D

12.4.1 I

VBA is a
guages,
verted in
the progr
Pascal, F
that the o
saved int
This exe
code.

Predictab
then inte
generally
However
to learn a

Discussion12

NextHome Previous 15 o f 16

() function.

ing.

Test the function by passing it
various parameter values.�

According to the function
declaration, MinValue()
expects two single-precision
numbers as parameters.
Anything else generates an error.
. An Introduction to Visual Basic

FIGURE 12.7: Testing the MinValue

Implement the MinValue()
function using conditional branch�

These five lines could be replaced with one line:
MinValue = iif(n1 <= n2, n1, n2)

Application to the assignment12

NextHome Previous 16 o f 16

12
Yo
as
to
. An Introduction to Visual Basic

.5 Application to the assignment
u will need a MinValue() function later in the
signment when you have to determine the quantity
 ship.
• Create a basUtilities module in your assign-

ment database and implement a MinValue()
function.

To ensure that no confusion arises between
your user-defined function and the built-in
SQL Min() function, do not call you function
Min() .

	12.1 Introduction: Learning the basics of programm...
	12.1.1 Interacting with the interpreter

	12.2 Learning objectives
	12.3 Tutorial exercises
	12.3.1 Invoking the interpreter
	12.3.2 Basic programming constructs
	12.3.3 Creating a module
	12.3.4 Creating subroutines with looping and branc...
	12.3.5 Using the debugger
	12.3.6 Passing parameters
	12.3.7 Creating the Min() function

	12.4 Discussion
	12.4.1 Interpreted and compiled languages

	12.5 Application to the assignment

