EECE360
Lecture 3

Spring-Mass-Damper System**

- $F(t)$: equivalent force on mass m
- The signs of $-k x$ and $-c x$ are negative because these forces oppose the motion of $f(t)$

$$
m \ddot{x}=F(t)=-k x-c \dot{x}+f(t)
$$

Vertical Displacement

Series RLC Circuit**

Applying Kirchhoff's voltage law yields an integrodifferential model:

$$
\left.\begin{array}{rl}
v(t) & =v_{R}(t)+v_{L}(t)+v_{C}(t) \\
& =\operatorname{Ri}(t)+L \frac{d i(t)}{d t}+\frac{1}{C} \int_{0}^{t} i(\tau) d \tau
\end{array}\right\} \quad \text { Input: } v(t) ; \quad \text { Output: } i(t) \quad \$
$$

Two-Mass System**

$$
\left\{\begin{array}{l}
m \ddot{x}=f(t)-K x+K_{1}\left(x_{1}-x\right)+C_{1}\left(\dot{x}_{1}-\dot{x}\right) \\
m_{1} \ddot{x}_{1}=-K_{1}\left(x_{1}-x\right)-C_{1}\left(\dot{x}_{1}-\dot{x}\right)
\end{array}\right.
$$

Assume the motion directions: $x>0 ; x_{1}-x>0$

Parallel RLC Circuit**

Applying Kirchhoff's current law:
$C \frac{d v(t)}{d t}+\frac{1}{R} v(t)+\frac{1}{L} \int_{0}^{t} v(t)=r(t)$
Input: $r(t)$; Output: $v(t)$

The Laplace Transform

- The method of Laplace transforms converts a calculus problem (the linear differential equation) into an algebra problem.
- The solution of the algebra problem is then fed backwards through a the Inverse Laplace Transform and the solution to the differential equation is obtained.

The Laplace Transform

- Like the Fourier transform, the Laplace transform is an integral transform

$$
\mathcal{L}[f(t)](s)=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

- Alternately the Laplace variable scan be considered to be the differential operator:

$$
s=\frac{d(.)}{d t}
$$

The Laplace Transform

- Pierre-Simon Laplace (1749-1827)
- Laplace proved the stability of the solar system. He also put the theory of mathematical probability on a sound footing
- "All the effects of Nature are only the mathematical consequences of a small number of immutable laws."
- Studied, but did not fully developed the Laplace transform

Laplace Transform Properties

- Linearity:

$$
\begin{aligned}
\mathcal{L}[k f(t)] & =k F(s) \\
\mathcal{L}\left[f_{1}(t)+f_{2}(t)\right] & =F_{1}(s)+F_{2}(s)
\end{aligned}
$$

- Differentiation:

$$
\begin{aligned}
\mathcal{L}[\dot{f}(t)] & =s F(s)-f\left(0^{-}\right) \\
\mathcal{L}[\dot{f}(t)] & =s^{2} F(s)-s \dot{f}\left(0^{-}\right)-f\left(0^{-}\right) \\
\mathcal{L}\left[f^{(n)}(t)\right] & =s^{n} F(s)-s^{n-1} f\left(0^{-}\right)-\cdots-f^{(n-1)}\left(0^{-}\right)
\end{aligned}
$$

- Final value theorem: $\lim _{t \rightarrow \infty} f(t)=\lim _{s \rightarrow 0} s F(s)$
- Initial value theorem: $\quad \underset{f\left(0^{+}\right)}{ }=\lim _{s \rightarrow \infty} s F(s)$

Important Laplace Tr. Pairs

- Impulse function
- Step function
- Exponential decay
- Sine and cosine

$F(s)$	$f(t)$
1	$\delta(t)$
$\frac{1}{s}$	$\mathbf{1}(t)$
$\frac{1}{s+a}$	$e^{-a t}$
$\frac{\omega}{s^{2}+\omega^{2}}$	$\sin (\omega t)$
$\frac{s^{2}+\omega^{2}}{2}$	$\cos (\omega t)$

See Dorf and Bishop, Table 2.3, p. 47 and Table D. 1 (App. D) online.

Laplace Transforms

- Region of convergence:
- Where the transform integral converges
- The Laplace transform exists only when the integral converges!
- If $|f(t)|<M e^{a t}$ for all positive t, then $\int_{0^{-}}^{\infty}|f(t)| e^{-s t} d t<\infty$ will converge for $s>a$.

$f(t)$	$F(S)$	R. O.C.
1	$\frac{1}{s}$	$s>0$
1	$\frac{n!}{s^{n+1}}$	$n \in \mathbb{Z}>0$
t^{n}	$\frac{\Gamma(a+1)}{s^{a+1}}$	$a>0$
t^{a}	$\frac{1}{s-a}$	$s>a$
$e^{a t}$	$\frac{s}{s^{2}+a^{2}}$	$s>0$
$\cos (a t)$	$s>a$	
$e^{a t} \sin (b t)$	$\frac{b}{(s-a)^{2}+b^{2}}$	$s>a$
$\delta(t-c)$	$e^{-c s}$	$c>0$

Important Laplace Tr. Pairs

- Damped oscillations

$F(s)$	$f(t)$
$\frac{\omega}{\frac{\omega}{(s+a)+2} \omega^{2}}$	$e^{-a t} \sin (\omega t)$
$\frac{s+a}{(s+a)^{2}{ }^{2}+\omega^{2}}$	$e^{-a t} \cos (\omega t)$
$\frac{s^{2}+2 \zeta \omega_{n}}{s^{2}+2+\omega_{n}^{2}}$	$\frac{\omega_{n}}{\sqrt{1-\zeta^{2}}} e^{-\zeta \omega_{n} t} \sin \left(\omega_{n} \sqrt{1-\zeta^{2}} t\right)$

See Dorf and Bishop, Table 2.3, p. 47 and Table D. 1 (App. D) online.

EECE 360

Example

- Consider the spring-mass-damper system

$$
M \frac{d^{2} y(t)}{d t^{2}}+b \frac{d y(t)}{d t}+k y(t)=r(t)
$$

- Assuming the system is initially at rest (all initial conditions at zero), then

$$
R(S)=M s^{2} Y(s)+b s Y(s)+k Y(s)
$$

Transfer Function

- Defined as the ratio of the Laplace transform of the output to that of the input
- Describes dynamics of a LTI system

Transfer Function

- Differential equation replaced by algebraic relation $Y(s)=G(s) R(s)$
- Note that if $R(s)=1$ then $Y(s)=G(s)$ is the impulse response of the system
- Note that if $R(s)=1 / s$, the unit step function, then $Y(s)=G(s) / s$ is the step response
- The magnitude and phase shift of the response to a sinusoid at frequency ω is given by the magnitude and phase of the complex number $G(j \omega)$ (see Chapter 8)

Transfer Function

- Time domain

EECE 360

Transfer Function

- Using the Final Value Theorem, the static or D.C. gain of a transfer function $G(s)$ is given by $G(0)$:

$$
\lim _{t \rightarrow \infty} f(t)=\lim _{s \rightarrow 0} s G(s)
$$

- Let $G(s)=N(s) / D(s)$, then
- Zeros of $G(s)$ are the roots of $N(s)=0$
- Poles of $G(s)$ are the roots of $D(s)=0$

Second Order System Poles

Second Order System Poles

Critical damping
EECE 360

* Damping ratio
ω_{n} Natural frequency
In the underdamped case (complex roots due to the quadratic):

$$
\begin{aligned}
& s_{1,2}=-\zeta \omega_{n} \pm j \omega_{n} \sqrt{1-\zeta^{2}} \\
& \text { with } \zeta<1
\end{aligned}
$$

Natural Response (no input)

$\frac{w_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}} \Leftrightarrow \frac{\omega_{n}}{\sqrt{1-\zeta^{2}}} e^{-\zeta \omega_{n} t} \sin \left(\omega_{n} \sqrt{1-\zeta^{2}} t\right), \zeta<1$

Example: Spring-mass-damper

- Find transfer function $G(s)$ between the position $x_{1}(t)$ and the forcing function $r(t)$
- Key assumption: IC are zero
- $x_{1}(t)=x_{2}(t)=0$
- $\mathrm{dx}_{1} / \mathrm{dx}=\mathrm{dx} / \mathrm{dt}=0$

- Note that $\mathrm{x}_{2}(\mathrm{t})$ does not appear explicitly. (Why?)

Dorf and Bishop, Example 2.4, p. 56

Example: DC Motor

$i_{a}(t)=$ armature current	$L_{a}=$ armature inductance
$R_{a}=$ armature resistance	$e_{a}(t)=$ applied voltage
$e_{b}(t)=$ back emf	$K_{b}=$ back-emf constant
$T_{L}(t)=$ load torque	$\phi=$ magnetic flux in the air gap
$T_{m}(t)=$ motor torque	$\omega_{m}(t)=$ rotor angular velocity
$\theta_{m}(t)=$ rotor displacement	$J_{m}=$ rotor inertia
$K_{i}=$ torque constant	$B_{m}=$ viscous friction coefficient

Example: DC Motor

- Armature circuit: $\quad e_{a}(t)-e_{b}(t)=R_{a} i_{a}+L_{a} \frac{d i_{a}}{d t}$
- Motor relations: $\quad T_{m}(t)=K_{i} i_{a}(t)$
- Mechanical

Response: $\quad J_{m} \dot{\omega}_{m}(t)=T_{m}(t)-T_{d}(t)-B_{m} \omega_{m}(t)$

Example: DC Motor

Using Laplace transform, we can represent this DC motor by the block diagram below

Transfer function: $H(s)=\frac{\theta_{m}(s)}{E_{a}(s)}$

Example: DC Motor

- Armature circuit:

$$
E_{a}(s)-E_{b}(s)=\left(R_{a}+s L_{a}\right) I_{a}(s)
$$

- Motor relations:
- Mechanical

$$
\left\{\begin{array}{l}
T_{m}(s)=K_{i} I_{a}(s) \\
E_{b}(s)=K_{b} \Omega_{m}(s)
\end{array}\right.
$$

Response:

$$
J_{m} s \Omega_{m}(s)=T_{m}(s)-T_{d}(s)-B_{m} \Omega_{m}(s)
$$

Summary

- Today
- Laplace transform
- Final Value Theorem
- Transfer functions
- Next
- Operational Amplifiers
- Block diagram models

