EECE 360

Lecture 6

State Equation Representation of Dynamic Systems

Dr. Oishi

Electrical and Computer Engineering
University of British Columbia, BC
http://courses.ece.ubc.ca/360
eece360.ubc@gmail.com
Chapter 3.1-3.5
EECE 360 v 2.4

Context: What we've done

- Introduction to control systems
- Actuators, sensors, and the role of control
- Modeling of control systems
- Time domain ($F=m a, K V L, K C L, ~ e t c$.
- Linearization
- Frequency domain (transfer functions)
- Laplace transform
- Block diagram manipulation
- Implementation through op-amps

Outline

- Last class
- Transfer functions vs. state-space models
- Creating state-space models from $n^{t h}$ order differential equations
- Today and next class
- Review and context
- State-space models --> transfer functions
- Linear algebra review
- Closed-form solution to state-space models

Context: What we're doing

- State-space models
- Specific time-domain model that is very useful
- For the purpose of control, will be a complementary but related framework to frequency domain methods
- From state-space to transfer function
- From transfer function to state-space
- Closed-form solution $(x(t)=\ldots$)
- Requires some linear algebra

Context: What we will do

- Feedback characteristics
- What the closed-loop systems should look like
- Control in frequency domain (classical control)
- Root locus
- Bode diagrams
- Nyquist criterion
- Control in state-space domain (modern control)
- Pole placement
- Controllability
- Observability

State-Space Models

Transfer function

State-space
equations

- The state-variable model, state-space model, or state-space description
- A differential equation model
- Equations are written in a specific format
- Expressed as n first-order coupled differential equations
- Preserve the system's input-output relationship (for the same transfer function)

Context: General picture

- How LTI systems can and should behave
- Modeling of LTI systems
- Frequency domain (transfer functions)
- Time domain (state-space descriptions)
- Tools to analyze LTI systems
- Frequency domain
- Time domain
- How to design controllers to make LTI systems behave in a desired manner
- Frequency domain
- Time-domain

State-space models

- State differential equations are an alternative way to describe a dynamic system (time-domain method)
- For LTI systems, it is routine to move between state and transfer function representations i.e. between frequency and time domains
- Most multivariable design methods are based on state equations
- Basic technology: A physical system can be described by a high order differential equation,

EECE 360 v2.4

The State Differential Equation

State-space models

- To get a state-space model:
- Start with a high-order differential equation
- Convert to a set of 1st order coupled differential equations
- Write in state-space form (A,B,C,D)

Example: RLC Circuit

- Consider an RLC circuit described by:

$$
e(t)=R I(t)+L \frac{d}{d t} I(t)+\frac{1}{C} \int_{0}^{t} I(\tau) d \tau
$$

With $x_{1}(t)=\int_{0}^{t} I(\tau) d \tau$ and $x_{2}(t)=I(t)$ the statespace formulation is
\(\frac{d}{d t} x=\left[$$
\begin{array}{cc}\text { state vector } \\
-\frac{1}{L C} & -\frac{R}{L}\end{array}
$$\right] x+\left[\begin{array}{c}0

\frac{1}{L}\end{array}\right] e(t) \quad\)| State |
| :---: |
| differential |
| equation |

Example: RLC Circuit

- Consider the RLC circuit:
- Applying KVL yields

$$
e(t)=R I(t)+L \frac{d}{d t} I(t)+\frac{1}{C} \int_{0}^{t} I(\tau) d \tau
$$

- With input $e(t)$ and output $I(t)$
- Choose the state $\mathrm{x}=\left[\mathrm{x}_{1}(\mathrm{t}), \mathrm{x}_{2}(\mathrm{t})\right]$,

$$
\text { With } x_{1}(t)=\int_{0}^{t} I(\tau) d \tau \text { and } x_{2}(t)=I(t)
$$

- Write the state differential equation in the form

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right] } & =\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right] u \\
y & =\left[\begin{array}{ll}
c_{1} & c_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+D u
\end{aligned}
$$

Example: RLC Circuit

- Through substitution:

$$
\begin{aligned}
& e(t)=R x_{2}(t)+L \frac{d x_{2}}{d t}+\frac{1}{C} x_{1}(t) \\
& \dot{x}_{2}(t)=-\frac{1}{L C} x_{1}(t)-\frac{R}{L} x_{2}(t)+\frac{1}{L} e(t) \\
& \hline
\end{aligned}
$$

- Now recall that through definition of the state

$$
\dot{x}_{1}=x_{2}(t)
$$

- Put coefficients into appropriate matrices

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right] } & =\left[\begin{array}{cc}
0 & 1 \\
-\frac{1}{L C} & -\frac{R}{L}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
\frac{1}{L}
\end{array}\right] u \\
y & =\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\end{aligned}
$$

Example: $2^{\text {nd }}$ order system

- Consider the second-order system:

$$
\begin{gathered}
\ddot{y}+2 \omega \zeta \dot{y}+\omega^{2} y=u(t) \\
\text { With } x=\left[\begin{array}{ll}
y & \dot{y}
\end{array}\right]^{T} \text { its state-space description is } \\
\dot{x}(t)=\left[\begin{array}{cc}
0 & 1 \\
-\omega^{2} & -2 \omega \zeta
\end{array}\right] x(t)+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t) \\
y(t)=\left[\begin{array}{ll}
1 & 0
\end{array}\right] x
\end{gathered}
$$

Example: RLC Circuit

- Where

$$
\left\{\begin{aligned}
A & =\left[\begin{array}{cc}
0 & 1 \\
-\frac{1}{L C} & -\frac{R}{L}
\end{array}\right] \\
B & =\left[\begin{array}{c}
0 \\
\frac{1}{L}
\end{array}\right] \\
C & =\left[\begin{array}{ll}
0 & 1
\end{array}\right] \\
D & =0
\end{aligned}\right.
$$

- Represents the state-space model

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right] } & =\left[\begin{array}{cc}
0 & 1 \\
-\frac{1}{L C} & -\frac{R}{L}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
\frac{1}{L}
\end{array}\right] u \\
y & =\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\end{aligned}
$$

State-space models

- Now that we have a state-space model:
- How does this relate to transfer functions?
- How can we find a transfer function from a given state-space model?

Transfer function of state eqns

- The Laplace transform of

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)+D u(t)
\end{aligned}
$$

- (for a SISO system) is

$$
\begin{aligned}
s X(s) & =A X(s)+B U(s) \\
Y(s) & =C X(s)+D U(s)
\end{aligned}
$$

- Re-arrange to find $X(s)$ in terms of $U(s), x(0)$:
$(s I-A) X(s)=B U(s)$
So, $X(s)=(s I-A)^{-1} B U(s)$
EECE 360 v2.4

Transfer function of state eqns

- Take the Laplace transform of

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)+D u(t)
\end{aligned}
$$

- (with non-zero initial conditions)
- Re-arrange to find $X(s)$ in terms of $U(s), x(0)$:

$$
\begin{aligned}
s X(s)-x(0) & =A X(s)+B U(s) \\
(s I-A) X(s) & =B U(s)+x(0) \\
\text { So, } X(s) & =(s I-A)^{-1} B U(s)+(s I-A)^{-1} x(0)
\end{aligned}
$$

Solution to the State Eq'ns

- Why is this representation so useful?

Because we know what its solution looks like.

- Given the state equations

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)+D u(t)
\end{aligned}
$$

- We can show that

$$
x(t)=e^{A t} x(0)+\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau
$$

**Note that this is a matrix exponential!

Key results: State-space to T.F.

- With zero initial conditions:

$$
\frac{Y(s)}{U(s)}=C(s I-A)^{-1} B+D
$$

- With non-zero initial conditions:
$X(s)=(s I-A)^{-1} B U(s)+(s I-A)^{-1} x(0)$
$Y(s)=C(s I-A)^{-1} B U(s)+C(s I-A)^{-1} x(0)+D U(s)$
- ** What is (sI-A) ${ }^{-1}$? We need some linear algebra to find this.

