EECE 360 Lecture 6

State Equation Representation of Dynamic Systems

Dr. Oishi

Electrical and Computer Engineering University of British Columbia. BC

http://courses.ece.ubc.ca/360

eece360.ubc@gmail.com

Chapter 3.1 - 3.5

EECE 360 v2.4

Context: What we've done

- Introduction to control systems
 - Actuators, sensors, and the role of control
- Modeling of control systems
 - Time domain (F=ma, KVL, KCL, etc.)
 - Linearization
 - Frequency domain (transfer functions)
 - Laplace transform
 - Block diagram manipulation
 - Implementation through op-amps

Outline

- Last class
 - Transfer functions vs. state-space models
 - Creating state-space models from nth order differential equations
- Today and next class
 - Review and context
 - State-space models --> transfer functions
 - Linear algebra review
 - Closed-form solution to state-space models

EECE 360 v2.4

Context: What we're doing

- State-space models
 - **Specific** time-domain model that is very useful
 - For the purpose of control, will be a complementary but related framework to frequency domain methods
 - From state-space to transfer function
 - From transfer function to state-space
 - Closed-form solution (x(t) = ...)
 - Requires some linear algebra

1

2

Context: What we will do

- Feedback characteristics
 - What the closed-loop systems should look like
- Control in frequency domain (classical control)
 - Root locus
 - Bode diagrams
 - Nyquist criterion
- Control in state-space domain (modern control)
 - Pole placement
 - Controllability
 - Observability

EECE	360	v2.4

5

State-Space Models

Transfer function

State-space equations

- The state-variable model, state-space model, or state-space description
 - A differential equation model
 - Equations are written in a *specific* format
 - Expressed as *n* first-order coupled differential equations
 - Preserve the system's input-output relationship (for the same transfer function)

Context: General picture

- How LTI systems can and should behave
 - Modeling of LTI systems
 - Frequency domain (transfer functions)
 - Time domain (state-space descriptions)
 - Tools to analyze LTI systems
 - Frequency domain
 - Time domain
- How to design controllers to make LTI systems behave in a desired manner
 - Frequency domain
 - Time-domain

EECE 360 v2.4

State-space models

- State differential equations are an alternative way to describe a dynamic system (*time-domain* method)
- For LTI systems, it is routine to move between state and transfer function representations i.e. between frequency and time domains
- Most multivariable design methods are based on state equations
- Basic technology: A physical system can be described by a high order differential equation,

6

• Consider the second-order system:

$$\ddot{y} + 2\omega\zeta\dot{y} + \omega^2 y = u(t)$$

With $x = \begin{bmatrix} y & \dot{y} \end{bmatrix}^T$ its state-space description is $\dot{x}(t) = \begin{bmatrix} 0 & 1\\ -\omega^2 & -2\omega\zeta \end{bmatrix} x(t) + \begin{bmatrix} 0\\ 1 \end{bmatrix} u(t)$

$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

EECE 360 v2.4

- Now that we have a state-space model:
 - How does this relate to transfer functions?
 - How can we find a transfer function from a given state-space model?

19

Transfer function of state eqns

Take the Laplace transform of

$$\dot{x}(t) = Ax(t) + Bu(t)$$

- y(t) = Cx(t) + Du(t)
- (with **non-zero** initial conditions)
- Re-arrange to find *X*(*s*) in terms of *U*(*s*), *x*(0):

$$sX(s) - x(0) = AX(s) + BU(s)$$

(sI - A)X(s) = BU(s) + x(0)
So, $X(s) = (sI - A)^{-1}BU(s) + (sI - A)^{-1}x(0)$

EECE 360 v2.4

Solution to the State Eq'ns

- Why is this representation so useful?
 Because we know what its solution looks like.
- Given the state equations

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$u(t) = Cx(t) + Du(t)$$

- We can show that $x(t) = e^{At} x(0) + \int_0^t e^{A(t-\tau)} B u(\tau) d\tau$

******Note that this is a **matrix exponential!**

EECE 360 v2.4

• With zero initial conditions: $\frac{Y(s)}{U(s)} = C(sI - A)^{-1}B + D$

- With non-zero initial conditions: $X(s) = (sI - A)^{-1}BU(s) + (sI - A)^{-1}x(0)$ $Y(s) = C(sI - A)^{-1}BU(s) + C(sI - A)^{-1}x(0) + DU(s)$
- ** What is (sI-A)-1? We need some linear algebra to find this.

EECE 360 v2.4

21