EECE 360

Lecture 7

State Equation Representation of Dynamic Systems

Dr. Oishi

Electrical and Computer Engineering
University of British Columbia
http://courses.ece.ubc.ca/360
eece360.ubc@gmail.com
Chapter 3.1-3.5
EECE 360 v 2.4

State-space models

- To get a state-space model:
- Start with a high-order differential equation
- Convert to a set of 1st order coupled differential equations
- Write in state-space form (A,B,C,D)
- Now that we have a state-space model:
- How does this relate to transfer functions?
- How can we find a transfer function from a given statespace model?

Outline

- Previously
- Transfer functions vs. state-space models
- Today
- Linear algebra review
- State-space models --> transfer functions
- Closed-form solution to state-space models
- Next time
- Transfer function --> state-space models

The State Differential Equation

- The general state space description for a linear time-
invariant, continuous-time dynamical system is:

- A is $(n \times n), B$ is $(n \times m, C$ is $(p \times n)$ and D is $(p \times m)$. Shorthand for this system is $[A, B, C, D]$ EECE 360 v2.4
where $x(t) \in \Re^{n}, u(t) \in \Re^{m}$ and $y(t) \in \Re^{p}$.

Key results: State-space to T.F.

- With zero initial conditions:

$$
\frac{Y(s)}{U(s)}=C(s I-A)^{-1} B+D
$$

- With non-zero initial conditions:
$X(s)=(s I-A)^{-1} B U(s)+(s I-A)^{-1} x(0)$
$Y(s)=C(s I-A)^{-1} B U(s)+C(s I-A)^{-1} x(0)+D U(s)$
- ** Need to find (sI-A)-1.

Matrix Inversion

$$
\mathbf{A}^{-1}=\frac{\text { adjoint of } \mathbf{A}}{\operatorname{det} \mathbf{A}}
$$

- Find A^{-1} such that

$$
\begin{aligned}
& A^{-1} A=I \\
& A A^{-1}=I
\end{aligned}
$$

- Example:
- First find determinant

$$
\mathbf{A}=\left[\begin{array}{rrr}
1 & 2 & 3 \\
2 & -1 & 4 \\
0 & -1 & 1
\end{array}\right]
$$

- Then find coefficients of the adjoint matrix (α_{11}, $\ldots \alpha_{\alpha_{11}}=(-1)^{2}\left|\begin{array}{ll}-1 & 4 \\ -1 & 1\end{array}\right|=3$.

$$
\mathbf{A}^{-1}=\frac{\operatorname{adjoint} \mathbf{A}}{\operatorname{det} \mathbf{A}}=\left(-\frac{1}{7}\right)\left[\begin{array}{rrr}
3 & -5 & 11 \\
-2 & 1 & 2 \\
-2 & 1 & -5
\end{array}\right]
$$

Linear Algebra Review

- To manipulate state-space representations of transfer functions, we need specific tools from linear algebra
- Matrix properties
- Matrix operations
- Matrix exponential...

See Appendix E (online) from Dorf and Bishop.

Summary: Linear Algebra Rev.

- Basic matrix operations
- 2×2 matrix determinant

$$
\operatorname{det} \mathbf{A}=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{21}
\end{array}\right|=a_{11} a_{22}-a_{12} a_{21}
$$

- 2×2 matrix inverse

$$
A^{-1}=\frac{1}{\operatorname{det} A}\left[\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right]
$$

- **Know specific formulas for 2×2 matrices.
- **Apply general formula to 3×3 matrices.

Summary: Linear Algebra Rev.

- $n \times n$ matrix determinant
- For a row i

$$
\operatorname{det} \mathbf{A}=\sum_{\mathrm{j}=1}^{\mathrm{n}} a_{i j} \alpha_{i j}
$$

- For a column j

$$
\operatorname{det} \mathbf{A}=\sum_{i=1}^{n} a_{i j} \alpha_{i}
$$

- $n \times n$ matrix inverse

$$
\mathbf{A}^{-1}=\frac{\text { adjoint of } \mathbf{A}}{\operatorname{det} \mathbf{A}}
$$

- Now back to the main topic: state-space --> transfer function EECE 360 v2. 4

Example: RLC Circuit

$$
\begin{aligned}
\frac{Y(s)}{U(s)} & =C(s I-A)^{-1} B+D \\
& =\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{cc}
s & -1 \\
\frac{1}{L C} & s+\frac{R}{L}
\end{array}\right]^{-1}\left[\begin{array}{c}
0 \\
\frac{1}{L}
\end{array}\right]+0 \\
& =\frac{1}{s\left(s+\frac{R}{L}\right)+\frac{1}{L C}}\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{cc}
s+\frac{R}{L} & 1 \\
-\frac{1}{L C} & s
\end{array}\right]\left[\begin{array}{l}
0 \\
\frac{1}{L}
\end{array}\right] \\
& =\frac{\frac{s}{L}}{s^{2}+\frac{R}{L} s+\frac{1}{L C}} \\
G(s) & =\frac{s}{L s^{2}+R s+\frac{1}{C}}
\end{aligned}
$$

Example: RLC Circuit

- Previously, with state $\mathrm{x}=\left[x_{1}(t), x_{2}(t)\right]$,

$$
x_{1}(t)=\int_{0}^{t} I(\tau) d \tau \text { and } x_{2}(t)=I(t)
$$

- we found the state-space equations

$$
\begin{gathered}
\frac{d}{d t} x=\left[\begin{array}{cc}
0 & 1 \\
-\frac{1}{L C} & -\frac{R}{L}
\end{array}\right] x+\left[\begin{array}{c}
0 \\
\frac{1}{L}
\end{array}\right] e(t) \\
I(t)=\left[\begin{array}{ll}
0 & 1
\end{array}\right] x
\end{gathered}
$$

- Now, find $\mathbf{Y (s) / U (s)}$ given (A, B, C, D)

Example: RLC Circuit Again

- Recall that with an alternate choice of state variables

$$
x_{1}(t)=I(t) \text { and } x_{2}(t)=v_{c}(\bar{t})
$$

(keep input $e(t)$ and output $I(t)$ as before)

- We find an equivalent state-space representation

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right] } & =\left[\begin{array}{cc}
-\frac{R}{L} & -\frac{1}{L} \\
\frac{1}{C} & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
\frac{1}{L} \\
0
\end{array}\right] e \\
y & =\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\end{aligned}
$$

with different $\mathrm{A}, \mathrm{B}, \mathrm{C}$ matrices

Example: RLC Circuit Again

$$
\begin{aligned}
\frac{Y(s)}{U(s)} & =C(s I-A)^{-1} B+D \\
& =\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{cc}
s+\frac{R}{L} & \frac{1}{L} \\
-\frac{1}{C} & s
\end{array}\right]^{-1}\left[\begin{array}{l}
\frac{1}{L} \\
0
\end{array}\right]+0 \\
& =\frac{1}{\left(s+\frac{R}{L}\right) s+\frac{1}{L C}}\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{cc}
s & -\frac{1}{L} \\
\frac{1}{C} & s+\frac{R}{L}
\end{array}\right]\left[\begin{array}{c}
\frac{1}{L} \\
0
\end{array}\right] \\
& =\frac{\frac{s}{L}}{s^{2}+\frac{R}{L} s+\frac{1}{L C}} \\
G(s) & =\frac{s}{L s^{2}+R s+\frac{1}{C}} \quad \begin{array}{l}
\text { **Note: This is the } \\
\text { same transfer } \\
\text { function as before }
\end{array}
\end{aligned}
$$

Relating state-space models

- One state-space model is related to another state-space model through a linear transformation $z=P x$.
- The matrix P must be invertible (the transformation must work in both directions).
- This is known as a similarity transformation, and the two state-space representations are said to be similar, or equivalent.
- We can show that transfer functions for both of these systems are the same.

Review: State-Space Models

- State-space descriptions are not unique - but input/output relations stay the same
- An input-output transfer function can be represented by more than one SISO state-space model.
- A SISO state-space model has only one transfer function associated with it.
- States are often variables that are readily measured, e.g. currents, voltages, positions, velocities, pressures, temperatures, concentrations, etc...

Relating state-space models

- For a state-space model with state x

$$
\begin{aligned}
\dot{x} & =A x+B u \\
y & =C x+D u
\end{aligned}
$$

- And transformation to a state z

$$
P^{-1} z=
$$

$\dot{z}=P \dot{x}$
$=P A x+P B u$
$=\underbrace{P A P^{-1}} z+\underbrace{P B} u$

- with output
$\tilde{\sim} \tilde{B}^{2}=P A P^{-1}$
$\tilde{B}=P B$
$y=C x+D u$
$\tilde{C}=C P^{-1}$
$=\underbrace{C P^{-1}} z+\underbrace{D u}$
$\tilde{D}=D$

Relating state-space models

- The equivalent state-space model in z

$$
\begin{array}{ll}
\dot{z}=\tilde{A} z+\tilde{B} u & \tilde{A}=P A P^{-1} \\
\mathrm{y}=\tilde{C} z+\tilde{D} u & \tilde{B}=P B \\
& \tilde{C}=C P^{-1} \\
& \tilde{D}=D
\end{array}
$$

- has the transfer function

$$
\begin{aligned}
z & =P x \\
P^{-1} z & =x
\end{aligned}
$$

$$
\frac{Y(s)}{U(s)}=\tilde{C}(s I-\tilde{A})^{-1} \tilde{B}+\tilde{D}
$$

$$
=C P^{-1}\left(s I-P A P^{-1}\right)^{-1} P B+D
$$

$$
=C P^{-1}\left(s P P^{-1}-P A P^{-1}\right)^{-1} P B+D
$$

$$
=C P^{-1} P(s I-A) P^{-1} P B+D
$$

Example: Spring-Mass-Damper

- To find the transfer function
- Plug the system matrices

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
0 & 1 \\
-\frac{k}{M} & -\frac{b}{M}
\end{array}\right], \quad B=\left[\begin{array}{c}
0 \\
\frac{1}{M}
\end{array}\right], \\
& C=\left[\begin{array}{ll}
1 & 0
\end{array}\right], \quad D=0
\end{aligned}
$$

- into the formula

$$
\frac{Y(s)}{U(s)}=C(s I-A)^{-1} B+D
$$

Example: Spring-Mass-Damper

- First-order differential equations

$$
\begin{aligned}
\frac{d x_{1}(t)}{d t} & =x_{2}(t) \\
\frac{d x_{2}(t)}{d t} & =-\frac{b}{M} x_{2}(t)-\frac{k}{M} x_{1}(t)+\frac{1}{M} u(t)
\end{aligned}
$$

- In matrix form:

$A=\left[\begin{array}{cc}0 & 1 \\ -\frac{k}{M} & -\frac{b}{M}\end{array}\right], \quad B=\left[\begin{array}{c}0 \\ \frac{1}{M}\end{array}\right], \quad C=\left[\begin{array}{ll}1 & 0\end{array}\right], \quad D=0$
EECE 360 v2.4
18

Example: Spring-Mass-Damper

Exercise:

- Find the new system matrices A, B, C, D that arise when the state is comprised of speed and position of the mass (in that order).
- Show that this system has the same transfer function as the system on the previous page.
- Bonus: What is the similarity transformation P that relates this system to the one on the previous page?

Summary

- Today and the last class
- Linear algebra review 1
- State-space models --> transfer functions
- Next time
- Transfer function --> state-space models
- Closed-form solution to state-space models

Linear algebra 2

