EECE 360 Lecture 8

State Equation Representation of Dynamic Systems (cont'd)

Dr. Oishi

Electrical and Computer Engineering
University of British Columbia
eece360.ubc@gmail.com
EECE 360 v2.4
Chapter 3.3-3.5

Review: State-Space Model

State differential
equation: $\quad \dot{x}(t)=A x(t)+B u(t)$
Output equation: $y(t)=C x(t)+D u(t)$
Taking the Laplace transform (assume zero initial conditions)

$$
\begin{aligned}
s X(s) & =A X(s)+B U(s) \\
{[s I-A] X(s) } & =B U(s) \\
\text { So, } X(s) & =[s I-A]^{-1} B U(s) \\
Y(s) & =\left\{C[s I-A]^{-1} B+D\right\} U(s) \\
& =G(s) U(s)
\end{aligned}
$$

Using Matlab

The Matlab command ss2tf automates this process and returns vectors corresponding to the numerator and denominator of the system's transfer function.

```
3> help sa2tf
    To get started, select "MATLAB Help" from the Help menu.
    SSZTF state-space to transfer function conversion.
        [NUM,DEN] = SS2TF(A,B,C,D,1u) calculates the transfer function:
                            NUM(S) -1
            H(B) = ------- = C(BI-A) B + D
                DEN(s)
    of the system:
            x = Ax + Bu
            y = Cx + Du
        from the 1u'th input. Vector DEN contains the coefficients of
    the denominator in descending powers of s. The numerator
    coefficients are returmed in matrix NuM with as many rovs as there
    are outputs Y.
```


State-Space Block Diagram

$$
\begin{array}{rlr|}
\hline \text { With zero - initial state: } & s X(s)=A X(s)+B U(s) \\
\text { With } \mathrm{D}=0: & Y(s)=C X(s) \\
\hline
\end{array}
$$

T.F. to State-Space

- For a given transfer function, there is no unique state space realization
- Engineering dictates the use of a realization of least order, a minimal realization
- A minimal realization is both controllable and observable.

Controllable and Observable

- A system is completely controllable if there exists a control $u(t)$ that can transfer any initial state $x(0)$ to any desired $x(t)$ in a finite time T.
- A system is completely observable if there exists a finite time T such that, given the input $u(t)$, the initial state $x(0)$ can be determined from the observation history $y(t)$.

Canonical Forms

- The block diagram models can be easily derived from the transfer function from a system
- More than one alternative set of state variables
- More than one form of block diagram models
- Several key canonical forms of the state-space model
- Control canonical form
- Observer canonical form
- Jordan canonical form
- Diagonal canonical form
- etc...

Control Canonical Form**

Control Canonical Form

- Transfer function is unchanged when

$$
\frac{Y(s)}{U(s)}=\frac{b_{n-1} s^{n-1}+\cdots+b_{1} s+b_{0}}{s^{n}+a_{n-1} s^{n-1}+\cdots a_{1} s+a_{0}} \frac{Z(s)}{Z(s)}
$$

- Let $Y(s)=\left(b_{n-1} s^{n-1}+\cdots+b_{1} s+b_{0}\right) Z(s)$

$$
U(s)=\left(s^{n}+a_{n-1} s^{n-1}+\cdots a_{1} s+a_{0}\right) Z(s)
$$

- Inverse Laplace yields high-order diff. equations in z

$$
\begin{aligned}
& y(t)=b_{n-1} z^{(n-1)}+\cdots+b_{1} \dot{z}+b_{0} z \\
& u(t)=z^{(n)}+a_{n-1} z^{(n-1)}+\cdots a_{1} \dot{z}+a_{0} z
\end{aligned}
$$

Control Canonical Form

- Choose the state vector

$$
\begin{gathered}
x_{1}=z \\
x_{2}=\dot{x}_{1} \\
x_{3}=\dot{x}_{2} \\
\quad \vdots \\
x_{n}=\dot{x}_{n-1}
\end{gathered}
$$

- Substitute into

$$
\begin{aligned}
& y(t)=b_{n-1} z^{(n-1)}+\cdots+b_{1} \dot{z}+b_{0} z \\
& u(t)=z^{(n)}+a_{n-1} z^{(n-1)}+\cdots a_{1} \dot{z}+a_{0} z
\end{aligned}
$$

- To yield

$$
\begin{aligned}
y(t) & =b_{n-1} x_{n}+\cdots+b_{1} x_{2}+b_{0} x_{1} \\
u(t) & =\dot{x}_{n}+a_{n-1} x_{n}+\cdots a_{1} x_{2}+a_{0} x_{1}
\end{aligned}
$$

- Rearranging in state-space form,

$$
\begin{aligned}
\dot{x}_{n} & =-a_{n-1} x_{n}-\cdots-a_{1} x_{2}-a_{0} x_{1}+u \\
\dot{x}_{n-1} & =x_{n}, \dot{x}_{n-2}=x_{n-1}, \cdots, \dot{x}_{1}=x_{2}
\end{aligned}
$$

Control Canonical Form

$$
\begin{aligned}
\frac{Y(s)}{U(s)} & =\frac{b_{n-1} s^{n-1}+\cdots+b_{1} s+b_{0}}{s^{n}+a_{n-1} s^{n-1}+\cdots+a_{1} s+a_{0}} \quad \text { (Standard form) } \\
A & =\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-a_{0} & -a_{1} & -a_{2} & \cdots & -a_{n-1}
\end{array}\right], \quad B=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right] \\
C & =\left[\begin{array}{ccccc}
b_{0} & b_{1} & b_{2} & \cdots & b_{n-1}
\end{array}\right], \quad D=0
\end{aligned}
$$

Observer Canonical Form

$$
\frac{Y(s)}{U(s)}=\frac{b_{n-1} s^{n-1}+\cdots+b_{1} s+b_{0}}{s^{n}+a_{n-1} s^{n-1}+\cdots+a_{1} s+a_{0}}
$$

$$
\text { Let } y(t)=x_{1}(t), \text { then }
$$

$$
\left(s^{n}+a_{n-1} s^{n-1}+\ldots+a_{1} s+a_{0}\right) X_{n}(s)
$$

$$
=\left(b_{n-1} s^{n-1}+\ldots+b_{1} s+b_{0}\right) U(s)
$$

$$
-s^{n} X_{n}(s)+s^{n-1}\left(-a_{n-1} X_{n}(s)+b_{n-1} U(s)\right)+
$$

$$
=0 \underbrace{\ldots+s\left(-a_{1} X_{n}(s)+b_{1} U(s)\right)+\underbrace{\left(-a_{0} X_{n}(s)+b_{0} U(s)\right.})}
$$

Observer Canonical Form

$$
\frac{Y(s)}{U(s)}=\frac{b_{n-1} s^{n-1}+\cdots+b_{1} s+b_{0}}{s^{n}+a_{n-1} s^{n-1}+\cdots+a_{1} s+a_{0}}
$$

Observer Canonical Form

$$
\frac{Y(s)}{U(s)}=\frac{b_{n-1} s^{n-1}+\cdots+b_{1} s+b_{0}}{s^{n}+a_{n-1} s^{n-1}+\cdots+a_{1} s+a_{0}}
$$

$$
\begin{aligned}
& A=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & -a_{0} \\
1 & 0 & \cdots & 0 & -a_{1} \\
0 & 1 & \cdots & 0 & -a_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & -a_{n-1}
\end{array}\right], \quad B=\left[\begin{array}{c}
b_{0} \\
b_{1} \\
b_{2} \\
\vdots \\
b_{n-1}
\end{array}\right] \\
& C=\left[\begin{array}{lllll}
0 & 0 & \cdots & 0 & 1
\end{array}\right], \quad D=0
\end{aligned}
$$

Example 1

- Given the transfer function

$$
G(s)=\frac{s+2}{s^{2}+4 s+3}
$$

- 1. Find the state-space realization in control canonical form.
- 2. Find the state-space realization in observer canonical form.
- 1. Control canonical form

$$
\begin{array}{ll}
A=\left[\begin{array}{cc}
0 & 1 \\
-3 & -4
\end{array}\right], & B=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \\
C=\left[\begin{array}{ll}
2 & 1
\end{array}\right], & D=0
\end{array}
$$

- Results in the state-space realization

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right] } & =\left[\begin{array}{cc}
0 & 1 \\
-3 & -4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u \\
y & =\left[\begin{array}{ll}
2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+0 \cdot u
\end{aligned}
$$

- Confirm that this state-space realization produces the same transfer function:

$$
\begin{aligned}
\frac{Y(s)}{U(s)} & =C(s I-A)^{-1} B \\
& =\left[\begin{array}{ll}
2 & 1
\end{array}\right]\left(\left[\begin{array}{ll}
s & 0 \\
0 & s
\end{array}\right]-\left[\begin{array}{cc}
0 & 1 \\
-3 & -4
\end{array}\right]\right)^{-1}\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 & 1
\end{array}\right]\left(\left[\begin{array}{cc}
s & -1 \\
3 & s+4
\end{array}\right]\right)^{-1}\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
$$

Example 1

$G(s)=\frac{s+2}{s^{2}+4 s+3}$

- and since $\left(\left[\begin{array}{cc}s & -1 \\ 3 & s+4\end{array}\right]\right)^{-1}=\frac{1}{s(s+4)+3}\left[\begin{array}{cc}s+4 & 1 \\ -3 & s\end{array}\right]$
- we substitute such that

$$
\begin{aligned}
\frac{Y(s)}{U(s)} & =\frac{1}{s(s+4)+3}\left[\begin{array}{ll}
2 & 1
\end{array}\right]\left[\begin{array}{cc}
s+4 & 1 \\
-3 & s
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& =\frac{1}{s^{2}+4 s+3}\left[\begin{array}{ll}
2(s+4)-3 & 2+s
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& =\frac{s+2}{s^{2}+4 s+3}
\end{aligned}
$$

- 2. Observer canonical form

$$
\begin{array}{ll}
A=\left[\begin{array}{ll}
0 & -3 \\
1 & -4
\end{array}\right], & B=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \\
C=\left[\begin{array}{ll}
0 & 1
\end{array}\right], & D=0
\end{array}
$$

- Results in the state-space realization

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{z}_{1} \\
\dot{z}_{2}
\end{array}\right] } & =\left[\begin{array}{ll}
0 & -3 \\
1 & -4
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]+\left[\begin{array}{l}
2 \\
1
\end{array}\right] u \\
y & =\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]+0 \cdot u
\end{aligned}
$$

- Confirm that this state-space realization produces the same transfer function:

$$
\begin{aligned}
\frac{Y(s)}{U(s)} & =C(s I-A)^{-1} B \\
& =\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left(\left[\begin{array}{cc}
s & 0 \\
0 & s
\end{array}\right]-\left[\begin{array}{ll}
0 & -3 \\
1 & -4
\end{array}\right]\right)^{-1}\left[\begin{array}{l}
2 \\
1
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left(\left[\begin{array}{cc}
s & 3 \\
-1 & s+4
\end{array}\right]\right)^{-1}\left[\begin{array}{l}
2 \\
1
\end{array}\right]
\end{aligned}
$$

Example 1

$$
G(s)=\frac{s+2}{s^{2}+4 s+3}
$$

- and since $\left(\left[\begin{array}{cc}s & 3 \\ -1 & s+4\end{array}\right]\right)^{-1}=\frac{1}{s(s+4)+3}\left[\begin{array}{cc}s+4 & -3 \\ 1 & s\end{array}\right]$
- we substitute such that

$$
\begin{aligned}
\frac{Y(s)}{U(s)} & =\frac{1}{s(s+4)+3}\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{cc}
s+4 & -3 \\
1 & s
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right] \\
& =\frac{1}{s^{2}+4 s+3}\left[\begin{array}{ll}
1 & s
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right] \\
& =\frac{s+2}{s^{2}+4 s+3}
\end{aligned}
$$

Example 1

State-space to transfer function Transfer function to state-space

- Control Canonical Form

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-3 & -4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u
$$

$$
y=\left[\begin{array}{ll}
2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+0 \cdot u \quad \begin{aligned}
& \text { Transfer function } \\
& G(s)=\frac{s+2}{s^{2}+4 s+3}
\end{aligned}
$$

- Observer Canonical Form

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{z}_{1} \\
\dot{z}_{2}
\end{array}\right] } & =\left[\begin{array}{ll}
0 & -3 \\
1 & -4
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]+\left[\begin{array}{l}
2 \\
1
\end{array}\right] u \\
y & =\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]+0 \cdot u
\end{aligned}
$$

The State Transition Matrix

- Previously, we found that

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
\text { Thus, } \quad X(s) & =(s I-A)^{-1} x(0)+(s I-A)^{-1} B U(s)
\end{aligned}
$$

- Now consider the homogenous (i.e. zero-input) case:

$$
\dot{x}=A x
$$

- The solution to this equation represents the evolution of the system's free response to non-zero initial conditions:

The State Transition Matrix

- Given an initial value, the state transition matrix predicts the state at any other time

- How do we compute this matrix?

State Transition Matrix

- Successive differentiation provides

$$
\begin{aligned}
\dot{x} & =A x \\
\ddot{x} & =A \dot{x}=A^{2} x \\
& \vdots \\
x^{(k)} & =A^{k} x
\end{aligned}
$$

- Evaluate at $t=0$:

$$
x^{(k)}(0)=A^{k} x(0)
$$

The State Transition Matrix

- Taylor's expansion of $x(t)$ around $t=0$:

$$
\begin{aligned}
x(t) & =\left.x\right|_{t=0}+\left.\frac{d x}{d t}\right|_{t=0} t+\left.\frac{d^{2} x}{d t^{2}}\right|_{t=0} \frac{t^{2}}{2!}+\cdots+\left.x^{(k)}\right|_{t=0}{\frac{t}{}{ }^{k}}_{k!}+\cdots \\
& =x(0)+\dot{x}(0) t+\ddot{x}(0) \frac{t}{2}+\cdots+x^{(k)}(0)^{\frac{t^{k}}{k!}}+\cdots \\
& \left.=x(0)+A x(0) t+A^{2} x(0) \frac{t^{2}}{2!}+\cdots+A^{k} x(0)\right)^{\frac{t^{k}}{k!}}+\cdots \\
& =\left(I+A t+A^{2} \frac{t^{2}}{2!}+\cdots+A^{k} \frac{t^{k}}{k!}+\cdots\right) x(0)
\end{aligned}
$$

- This series converges for all time, and is known as the matrix exponential function.

$$
x(t)=e^{A t} x(0)=\Phi(t) x(0)
$$

Example 2

- Consider the system

$$
\dot{x}=A x, \quad A=\left[\begin{array}{cc}
-1 & 0 \\
0 & -3
\end{array}\right]
$$

with initial condition $x(0)=\left[\begin{array}{ll}1 & 1\end{array}\right]^{\top}$.

- What is the state at $t=1$? At $t=5$?
- Solution: Find

$$
x(t)=e^{A t} x(0)=\Phi(t) x(0)
$$

Example 2

- Using the state transition matrix, we know that

$$
\begin{aligned}
& x(1)=e^{A \cdot 1} x(0) \\
& x(5)=e^{A \cdot 5} x(0)
\end{aligned}
$$

- So we compute the matrix exponential

$$
e^{A t}=I+A t+A^{2} \frac{t^{k}}{2!}+\ldots+A^{k} \frac{t^{k}}{k!}+\ldots=\sum_{k=1}^{\infty} A^{k} \frac{t^{k}}{k!}
$$

- by finding

$$
\begin{aligned}
A=\left[\begin{array}{cc}
-1 & 0 \\
0 & -3
\end{array}\right] & A^{3}=\left[\begin{array}{cc}
-1 & 0 \\
0 & -3^{3}
\end{array}\right] \\
A^{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 9
\end{array}\right] & \vdots
\end{aligned}
$$

Example 2

- So we find the matrix exponential

$$
\begin{aligned}
e^{A t} & =I+A t+A^{2} \frac{t^{k}}{2!}+\ldots+A^{k} \frac{t^{k}}{k!}+\ldots=\sum_{k=1}^{\infty} A^{k} \frac{t^{k}}{k!} \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\left[\begin{array}{cc}
-1 & 0 \\
0 & -3
\end{array}\right] t+\left[\begin{array}{cc}
(-1)^{2} & 0 \\
0 & (-3)^{2}
\end{array}\right] \frac{t^{2}}{2!}+\ldots+\left[\begin{array}{cc}
(-1)^{k} & 0 \\
0 & (-3)^{k}
\end{array}\right] \frac{t^{k}}{k!} \\
& =\left[\begin{array}{cc}
\left(1-t+\frac{t^{2}}{2!}+\ldots+(-1)^{k} \frac{t^{k}}{k!}+\ldots\right) \\
0 & \left(1-3 t+3^{2} \frac{t^{2}}{2!}+\ldots+(-3)^{k} \frac{t^{k}}{k!}+\ldots\right)
\end{array}\right]
\end{aligned}
$$

Example 2

$A=\left[\begin{array}{cc}-1 & 0 \\ 0 & -3\end{array}\right]$

- Now recall that for scalar exponentials

$$
e^{\alpha t}=1+\alpha t+\alpha^{2} \frac{t^{k}}{2!}+\ldots+\alpha^{k} \frac{t^{k}}{k!}+\ldots=\sum_{k=1}^{\infty} \alpha^{k} \frac{t}{k!}
$$

- So for the above matrix A, the matrix exponential is

$$
e^{A t}=\left[\begin{array}{cc}
e^{-t} & 0 \\
0 & e^{-3 t}
\end{array}\right]
$$

- The solution to $\dot{x}=A x$ is

$$
x(t)=e^{A t} x(0)=\left[\begin{array}{cc}
e^{-t} & 0 \\
0 & e^{-3 t}
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
e^{-t} \\
e^{-3 t}
\end{array}\right]
$$

State Transition Matrix

- **Note that while for this example and for other diagonal matrices,

$$
e^{A t}=\left[\begin{array}{cccc}
e^{a_{11} t} & 0 & \ldots & 0 \\
0 & e^{a_{22} t} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & e^{a_{22} t}
\end{array}\right]
$$

- But for general A the matrix exponential is NOT the exponential of each of its elements.

State Transition Matrix

- The matrix exponential can be easily solved for some forms of A (diagonal, upper triangular, and others)
- **But for general A, an easier way to solve for the state transition matrix is to find its Laplace transform (sI-A) ${ }^{\mathbf{- 1}}$.
- Can be computed in Matlab using 'expm' for specific A and t

$$
0.9671-0.2968
$$

$$
\begin{aligned}
& \gg A=[0-2 ; 1-3] ; \text { dt=0.2; Phi=expm(A*dt) } \\
& \text { Phi }=
\end{aligned}
$$

$$
0.1484 \quad 0.5219
$$

State transition matrix
for a Δt of 0.2 second

Summary

- Canonical forms
- State transition matrix
- State transition equation

