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Review: State-Space Model 

€ 

sX(s) = AX(s) + BU(s)
[sI − A]X(s) = BU(s)

So,   X(s) = [sI − A]−1BU(s)

€ 

Y (s) = {C[sI − A]−1B + D}U(s)
=G(s)U(s)

Taking the Laplace transform (assume zero initial 
conditions) 

State differential 
equation:  

Output equation: 
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Using Matlab 
The Matlab command ss2tf automates this process and  
returns vectors corresponding to the numerator and  
denominator of the system’s transfer function. 
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State-Space Block Diagram 

€ 

With zero− initial state : sX(s) = AX(s) + BU(s)
With D = 0 : Y (s) = CX(s)

U(s) X(s) Y(s) 
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T.F. to State-Space 

  For a given transfer function, there is 
no unique state space realization 

  Engineering dictates the use of a 
realization of least order, a minimal 
realization 

  A minimal realization is both 
controllable and observable. 
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Controllable and Observable 

  A system is completely controllable if 
there exists a control u(t) that can transfer 
any initial state x(0) to any desired x(t) in a 
finite time T. 

  A system is completely observable if there 
exists a finite time T such that, given the 
input u(t), the initial state x(0) can be 
determined from the observation history y(t).   
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Canonical Forms 

  The block diagram models can be easily derived from 
the transfer function from a system 

  More than one alternative set of state variables         
  More than one form of block diagram models  
  Several key canonical forms of the state-space model 

  Control canonical form 
  Observer canonical form 
  Jordan canonical form 
  Diagonal canonical form 
  etc… 
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Control Canonical Form ** 

  

€ 

x1 = z
x2 = ˙ x 1
x3 = ˙ x 2


xn = ˙ x n−1
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Control Canonical Form 

  Transfer function is unchanged when 

  Let  

  Inverse Laplace yields high-order diff. equations in z 
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Control Canonical Form 

  Choose the state vector 

  Substitute into  

  To yield 

  Rearranging in state-space form,  

  

€ 

x1 = z
x2 = ˙ x 1
x3 = ˙ x 2


xn = ˙ x n−1
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Control Canonical Form 
(Standard form) 
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Observer Canonical Form 

sX1(s) 

s2X2(s) 

snXn(s) 



EECE 360 v2.4 13 

Observer Canonical Form 
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Observer Canonical Form 
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Example 1 

  Given the transfer function 

  1. Find the state-space realization in control 
canonical form. 

  2. Find the state-space realization in observer 
canonical form. € 

G(s) =
s+ 2

s2 + 4s+ 3
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Example 1 

  1. Control canonical form  

  Results in the state-space realization 

€ 

G(s) =
s+ 2

s2 + 4s+ 3

€ 

A =
0 1
−3 −4
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
, B =

0
1
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
,

C = 2 1[ ], D = 0

€ 

˙ x 1
˙ x 2
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
=

0 1
−3 −4
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
x1

x2

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
+

0
1
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
u

y = 2 1[ ] x1

x2

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
+ 0 ⋅ u
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Example 1 

  Confirm that this state-space realization produces the 
same transfer function: € 

G(s) =
s+ 2

s2 + 4s+ 3

€ 

Y (s)
U(s) = C(sI − A)−1B

= 2 1[ ] s 0
0 s
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
−
0 1
−3 −4
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−1
0
1
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

= 2 1[ ] s −1
3 s+ 4
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−1
0
1
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
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Example 1 

  and since 

  we substitute such that 

€ 

G(s) =
s+ 2

s2 + 4s+ 3

€ 

s −1
3 s+ 4
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−1

=
1

s(s+ 4) + 3
s+ 4 1
−3 s

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

€ 

Y (s)
U(s) =

1
s(s+ 4) + 3 2 1[ ] s+ 4 1

−3 s
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
0
1
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

=
1

s2 + 4s+ 3
2(s+ 4) − 3 2 + s[ ] 01

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

=
s+ 2

s2 + 4s+ 3
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Example 1 

  2. Observer canonical form  

  Results in the state-space realization 

€ 

G(s) =
s+ 2

s2 + 4s+ 3

€ 

A =
0 −3
1 −4
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
, B =

2
1
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
,

C = 0 1[ ], D = 0

€ 

˙ z 1
˙ z 2
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
=

0 −3
1 −4
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
z1

z2

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
+

2
1
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
u

y = 0 1[ ] z1

z2

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
+ 0 ⋅ u
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Example 1 

  Confirm that this state-space realization produces the 
same transfer function: € 

G(s) =
s+ 2

s2 + 4s+ 3

€ 

Y (s)
U(s) = C(sI − A)−1B

= 0 1[ ] s 0
0 s
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
−
0 −3
1 −4
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−1
2
1
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

= 0 1[ ] s 3
−1 s+ 4
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−1
2
1
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
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Example 1 

  and since 

  we substitute such that 

€ 

G(s) =
s+ 2

s2 + 4s+ 3

€ 

s 3
−1 s+ 4
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−1

=
1

s(s+ 4) + 3
s+ 4 −3
1 s

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

€ 

Y (s)
U(s) =

1
s(s+ 4) + 3 0 1[ ] s+ 4 −3

1 s
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
2
1
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

=
1

s2 + 4s+ 3
1 s[ ] 21

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

=
s+ 2

s2 + 4s+ 3
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Example 1 

  Control Canonical Form  

  Observer Canonical Form 

€ 

˙ x 1
˙ x 2
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
=

0 1
−3 −4
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
x1

x2

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
+

0
1
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
u

y = 2 1[ ] x1

x2

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
+ 0 ⋅ u

€ 

˙ z 1
˙ z 2
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
=

0 −3
1 −4
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
z1

z2

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
+

2
1
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
u

y = 0 1[ ] z1

z2

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
+ 0 ⋅ u

€ 

G(s) =
s+ 2

s2 + 4s+ 3

Transfer function 

State-space to transfer function 
Transfer function to state-space 
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The State Transition Matrix 

  Previously, we found that  

  Now consider the homogenous (i.e. zero-input) case:  

  The solution to this equation  represents the 
evolution of the system’s free response to non-zero 
initial conditions: 

€ 

˙ x (t) = Ax(t) + Bu(t)
Thus, X(s) = (sI − A)−1 x(0) + (sI − A)−1BU(s)

State transition 
matrix 
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  Given an initial value, the state transition 
matrix predicts the state at any other time 

  How do we compute this matrix? 

The State Transition Matrix 



EECE 360 v2.4 25 

  Successive differentiation provides 

  Evaluate at t = 0: 

State Transition Matrix 
xAx=
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  Taylor’s expansion of x(t) around t=0: 

  This series converges for all time, and is 
known as the matrix exponential 
function. 

The State Transition Matrix 
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Example 2  

  Consider the system 

 with initial condition x(0) = [1 1]T. 

  What is the state at t=1 ?  At t=5 ? 

  Solution: Find  

€ 

˙ x = Ax, A =
−1 0
0 −3
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
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Example 2 

  Using the state transition matrix, we know that 

  So we compute the matrix exponential 

  by finding 
€ 

x(1) = eA ⋅1x(0)
x(5) = eA ⋅5x(0)

€ 

eAt = I + At + A2 t
k

2! + ...+ Ak t k

k! + ...= Ak t k

k!
k=1

∞

∑

€ 

A =
−1 0
0 −3
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

A2 =
1 0
0 9
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

  

€ 

A3 =
−1 0
0 −33
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 



Ak = (−1)k 0
0 (−3)k

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 



EECE 360 v2.4 29 

Example 2  

  So we find the matrix exponential  

€ 

eAt = I + At + A2 t
k

2! + ...+ Ak t k
k! + ...= Ak t k

k!
k=1

∞

∑

=
1 0
0 1
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
+
−1 0
0 −3
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
t + (−1)2 0

0 (−3)2
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
t 2

2! + ...+ (−1)k 0
0 (−3)k

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
t k

k!

=

1− t +
t 2
2! + ...+ (−1)k t

k

k! + ...
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 0

0 1− 3t + 32 t
2

2! + ...+ (−3)k t
k

k! + ...
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
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Example 2  

  Now recall that for scalar exponentials 

  So for the above matrix A, the matrix exponential is   

  The solution to    is 

€ 

eAt = e− t 0
0 e−3t

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ € 

eαt =1+α t +α 2 t k

2! + ...+α k t k

k! + ...= α k t k

k!
k=1

∞

∑

€ 

˙ x = Ax

€ 

A =
−1 0
0 −3
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

€ 

x(t) = eAt x(0) = e− t 0
0 e−3t

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
1
1
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
= e−t

e−3t
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
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State Transition Matrix 

  **Note that while for this example and for 
other diagonal matrices,  

  But for general A the matrix exponential 
is NOT the exponential of each of its 
elements. 

  

€ 

eAt =

ea11t 0 … 0
0 ea22t  0
   
0 0 … ea22t

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
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State Transition Matrix 

  The matrix exponential can be easily solved for some 
forms of A (diagonal, upper triangular, and others) 

  **But for general A, an easier way to solve for the 
state transition matrix is to find its Laplace 
transform (sI-A)-1. 

  Can be computed in Matlab using ‘expm’ for specific 
A and t 
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Summary 

  Canonical forms 
  State transition matrix 
  State transition equation 


