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Properties of Feedback 

Chapter 4.1-4.4, 12.1-12.2 
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Last Class 

!  Solution to general state-space equation 

!  Characteristic equation 
!  Poles of transfer function = Eigenvalues of state matrix A 
!  Eigenvalues and eigenvectors 

! 

˙ x (t) = Ax(t) + Bu(t)

! 

x(t) ="(t)x(0) + "(t # $)Bu($ )d$
0

t

%

Natural 
response 

Forced 
response 
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!  Solve  
 for x(t) in either the Laplace- or time-domain 

!  Often easier to use the Laplace domain, then take 
the inverse Laplace transform of the result. 

Review: State Trans. Matrix  

! 

X(s) ="(s)x(0) +"(s)BU(s)

! 

x(t) ="(t)x(0) + "(t # $)Bu($ )d$
0

t

%

Natural 
response 

Forced 
response 

! 

˙ x (t) = Ax(t) + Bu(t), x(0) = x0
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Review: Characteristic equation 

!  Recall that for a transfer function G(s)=N(s)/D(s) 
!  The characteristic equation is D(s)=0 
!  The roots of the characteristic equation are the  

 poles of G(s). 

!  Recall that the denominator of the transfer function 
of a state-space representation is det(sI-A) 
!  The characteristic equation is det(sI-A)=0 
!  The roots of the characteristic equation are the 

eigenvalues of the matrix A. 
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!  Eigenvalues of A 
 Find !i such that 

!  Eigenvectors of A 
 Find vi such that  

!  To numerically compute eigenvalues and 
eigenvectors in Matlab, use [V,D]=eig(A)!

Review: Linear Algebra Rev. 2 

! 

Avi = "ivi
0 = ("iI # A)vi

! 

0 = det("iI # A)
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Review: Putting it all together 

Laplace 
transform 

! 

X(s) ="(s)x(0) +"(s)BU(s)
"(s) = (sI # A)#1

! 

x(t) ="(t)x(0) + "(t # $)Bu($ )d$
0

t

%
"(t) = eAt

Inverse 
Laplace 

transform 
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Review: Putting it all together 

nth-order or integro-
differential equations 
F=ma, KVL, KCL, etc. 

Transfer function 
G(s)=Y(s)/U(s) 

Char. eqn 0=D(s) 

State-space 
differential equations 

dx/dt=Ax+Bu 
y=Cx+Du 

Char. eqn 0=|sI-A| 

1. Choose state variables 
2. Write as set of 1st order 
diff. eq 

Y(s)/U(s)= 
C(sI-A)-1B+D 

Laplace 
transform 

Control- or 
observer-

canonical form 
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Today 

Moving on:  
!  Feedback characteristics 

!  Open-loop vs. closed-loop 
!  Sensitivity and complementary sensitivity functions 
!  Disturbance signals in feedback 
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Basic Idea of State Feedback 

!  Consider the state feedback controller where 
K is constant feedback gain matrix 

!  Then one can write 

!  Whereas the poles of the open-loop system 
are given by the eigenvalues of A, the poles 
of the closed-loop system are given by the 
eigenvalues of (A-BK) 

! 

˙ x = Ax + Bu, u = "Kx

! 

˙ x = Ax + B("Kx)
= (A " BK)x
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State Feedback Requirements 

!  The poles of the closed-loop system can be 
arbitrarily assigned if and only if the system is 
controllable 

!  Not all states may be measurable.  
!  With observers, the state can be 

reconstructed from the output vector.  The 
reconstructed state is used instead of the true 
state to generate the feedback signal.  

!  Observers can only be designed for systems 
which are observable.  
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!  Open-loop control vs. Closed-loop control 
!  Sensitivity of Feedback 

!  Sensitivity function 
!  Complementary sensitivity function 

!  Disturbance propagation in the feedback loop 

Desired characteristics of a closed-loop system: 

•  Stability 

•  Insensitivity to variations in process 
parameters 

•  Disturbance rejection; insensitivity to noise 

•  Steady-state accuracy  

Outline 
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!  Perfect servo control could be achieved if Y(s)=R(s), 
e.g. if  

!  Perfect control requires open-loop inversion of the 
plant (if the model is perfect and there are no 
disturbances). 

!  True inversion is never achieved in practice. 
!  Various ways to approximate it. 

K(s) G(s) R(s) Y(s) U(s) 

Open-Loop Control 

! 

K(s)G(s) =1, or  K(s) =
1

G(s)
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From Open Loop to Closed Loop 

+ 

- 

R(s) Y(s) U(s) 
K(s) G(s) 

G(s) 

+ 

- 

R(s) U(s) 
K(s) G(s) 

Y(s) 

For the relationship between 
R(s) and Y(s), both are 
equivalent 
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High Gain Feedback and Inversion 

! 

U(s) = K(s) R(s) "G(s)U(s)( )
U(s)
R(s) =

K(s)
1+ K(s)G(s)

! 

U(s)
R(s) "

K(s)
K(s)G(s) "

1
G(s)

+ 

- 

R(s) Y(s) U(s) 
K(s) G(s) 

G(s) 

High gain feedback implicitly generates the inverse of G(s) 
without having to actually carry out the inversion! 

Note that for K(s)>>1 
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Why This is Not Practical 

!  Relies on very accurate model 
!  Requires the plant and its inverse to be 

stable 
!  Poor at rejecting disturbances 
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From Open Loop to Closed Loop 

!  In open loop, the controller has internal 
feedback 

!  In closed-loop, the feedback depends 
on what actually happens, since it is 
based on the output of the plant 

!  This will bring two benefits: 
!  De-sensitized to modeling errors 
!  De-sensitized to disturbances and noise 



EECE 360 v2.4 17 

Trade-offs 

!  Although it seems that all is needed is high 
gain feedback, there is a cost attached to the 
use of high-gain feedback 
!  Results in very large control actions 
!  Increases the risk of instability 
!  Increases the sensitivity to measurement noise 

!  High gain increases performance, but 
decreases robustness to noise 

!  This is the essence of control design 
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Sensitivity to Noise 

Setpoint 
(reference 

input) 

Output 

Noise 

K G + 

+ 
+ 

- 

r e 
n 

y 

! 

Y (s) = N(s) +GKE(s)
Y (s) = N(s) +GK(R(s) "Y (s))

Y (s)(1+GK) = N(s) +GKR(s)

Y (s) =
1

1+GK N(s) +
GK
1+GK R(s)

Error 
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!  Sensitivity function 
!  Effect of noise on the output 

!  Complementary sensitivity 
 function 

!  Effect of reference input on 
the output 

!  Note that 

! 

Y (s) =
1

1+GK N(s) +
GK
1+GK R(s)

! 

S =
1

1+GK

! 

T =
GK
1+GK

! 

S + T =
1

1+GK +
GK
1+GK =1

Sensitivity to Noise 
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Sensitivity Function 

!  S is a function of s.  If we replace s by j!, we 
have sensitivity as a frequency response. 

!  Typically GK is large at low frequencies and 
small at high frequencies, hence 

!  This implies 

! 

S(0) " 0 while  S(#) =1

! 

T(0) "1 while  T(#) = 0
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Example: Eurotunnel 

From France to Great Britain 
1987 – 1992 

23.5 miles long, bored 200 
feet below sea level 

Total cost $14 billion 
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Example: Eurotunnel 

!  Consider the following control system 

!  How can we select K to maintain performance 
while rejecting disturbances? 
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Example: Eurotunnel 

!  Output 

!  Sensitivity function 
!  Should be small for low freq., 1 for high freq. 

!  High values of K can achieve this, but create 
performance issues 

! 

Y (s) = T(s)R(s) + Td (s)D(s)

=
K +11s

s2 +12s+ K
R(s) +

1
s2 +12s+ K

D(s)

! 

S(s) =
1

s2 +12s+ K
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Example: Eurotunnel 

!  Output response to step input r(t) shows 
significant ‘overshoot’  

! 

S(s) =
1

s2 +12s+ K
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Example: Eurotunnel 

!  Output response to step disturbance input    
d(t) is of minimal magnitude 
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Example: Eurotunnel 

!  While K=100 provides good disturbance 
rejection, performance is poor due to 
excessive overshoot. 

!  Reducing K will improve performance by 
reducing overshoot. 

!  Reducing K will also worsen disturbance 
rejection. 

!  Try K=20 to achieve a response which is a 
compromise of the above goals. 
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Example: Eurotunnel 

!  Output response with controller K=20 
!  to unit step input r(t) (blue, solid) 
!  to unit step disturbance input d(t) (black, dotted) 
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Example: Eurotunnel 

!  Controller with K=20 significantly improves 
short-term (transient) performance. 

!  This inevitably means that disturbance 
rejection worsens. 

!  An appropriate choice of controller will take 
into account other restrictions or goals (e.g. 
quantified short-term (transient) or long-term 
(steady-state) performance specifications). 
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Robustness: System sensitivity 

!  Sensitivity of the closed-loop transfer function 
T to variations in the process parameters 

!  We want to relate dT/T to dG/G 
!  Since  

! 

T =
GK
1+GK

dT
dG =

K
1+GK "

GK 2

(1+GK)2

=
K(1+GK) "GK 2

(1+GK)2

=
K

(1+GK)2
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Robustness: System sensitivity 

! 

Sensitivity : S =
"T /T
"G /G

Evaluated in the limit as "G# 0 :

S = lim
"G#0

"T /T
"G /G =

dT
dG

G
T

! 

dT =
K

(1+GK)2
dG

=
GK

(1+GK)
1

(1+GK)
dG
G

dT
T =

1
1+GK

dG
G

dT
T = S dGG
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Summary 

!  Inversion as essence of control 
!  Can be achieved through high gain 

feedback 
!  High gain increases performance but 

decreases robustness 
!  All control design involves a trade off 

between performance and robustness 
(S+T = 1) 


