#### EECE 360 Lecture 12



#### Properties of Feedback: Steady-State Error

Dr. Oishi

Electrical and Computer Engineering

University of British Columbia, BC

http://courses.ece.ubc.ca/360

Chapter 4.2 - 4.4

1

eece360.ubc@gmail.com

EECE 360 v2.4





# Review: Trade-offs in Control

- Although it seems that all is needed is high gain feedback, there is a cost attached to the use of highgain feedback
  - Results in very large control actions
  - Increases the risk of instability
  - Increases the sensitivity to measurement noise
- High gain increases performance, but decreases robustness to noise
- This tradeoff (robustness vs. performance) is the essence of control design

EECE 360 v2.4



### **Review: Sensitivity Function**

- S is a function of s. If we replace s by jω, we have sensitivity as a frequency response.
- Typically GK is large at low frequencies and small at high frequencies, hence
  S(0) ≈ 0 while S(∞) = 1
- This implies

 $T(0) \approx 1$  while  $T(\infty) = 0$ 

EECE 360 v2.4



- Inversion as essence of control
- Can be achieved through high gain feedback
- High gain increases performance but decreases robustness
- All control design involves a trade off between performance and robustness
  - (S(s)+T(s)=1)

EECE 360 v2.4





# Effect of feedback

- Feedback attenuates disturbances at low frequencies ω such that |S(jω)| << 1.
  </li>
- Feedback amplifies disturbances at some frequencies  $\omega$  such that  $|S(j\omega)| > 1$ .



EECE 360 v2.4



## Effect of feedback

- Reduces sensitivity to disturbances at low frequencies
- Close to perfect setpoint tracking at low frequencies
- At high frequencies, when S(jω)≈1 the system has the same sensitivity and disturbance rejection properties as the openloop plant
- Typically S(jw) can be decreased in a frequency range at the cost of an increase in another frequency range

```
EECE 360 v2.4
```



5

7

### **Transient Response**

- Transient response is the response of a system as a function of time
- Generally refers to phenomena in the shortterm (as opposed to t -->∞)
- Quantified in overshoot, settling time, timeto-peak, rise time, and other measures.
- Transient response can be drastically improved through feedback





EECE 360 v2.4

EECE 360 v2.4

# UBC

# Example: Eurotunnel

- Now consider the transient response
- Characteristic equation  $0 = 1 + G(s)K(s) \implies 0 = s^2 + 12s + K$
- Response for various K

| K   | $\lambda_{1,2}$ | Response         | Steady - state dist. |
|-----|-----------------|------------------|----------------------|
| 20  | -2,-10          | overdamped       | 0.050                |
| 36  | -6,-6           | critical damping | 0.028                |
| 72  | -6±6j           | underdamped      | 0.014                |
| 180 | $-6 \pm 12j$    |                  | 0.006                |

EECE 360 v2.4

17







# Example: Eurotunnel

#### english1.m

| % Response to a Unit Step Input R(s)=1/s for K=20 and<br>%<br>numg=[1]; deng=[1 1 0]; sysg=tf(numg,deng);<br>K1=100; K2=20;<br>num1=[11 K1]; num2=[11 K2]; den=[0 1];<br>sys1=tf(num1,den);                                                                          | K=100                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| sys2=tf(num2,den);                                                                                                                                                                                                                                                   |                                                 |
| %<br>sysa=series(sys1,sysg); sysb=series(sys2,sysd);<br>sysc=feedback(sysa,[1]); sysd=feedback(sysb,[1]);                                                                                                                                                            | Closed-loop<br>transfer functions.              |
| t=[0:0.01:2.0]; < Ch                                                                                                                                                                                                                                                 | oose time interval.                             |
| [y1,t]=step(sysc,t); [y2,t]=step(sysd,t);<br>subplot(211),plot(t,y1), title('Step Response for K=100')<br>xlabel('Time (seconds)'),ylabel('y(t)'), grid<br>subplot(212),plot(t,y2), title('Step Response for K=20')<br>xlabel('Time (seconds)'),ylabel('y(t)'), grid | Create subplots<br>with x and y<br>axis labels. |

EECE 360 v2.4



#### EECE 360 v2.4

