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Stability 
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!  Modeling LTI systems 
!  S-domain 
!  State-space 

!  Feedback characteristics 
!  Transient response 
!  Steady-state response 

!  Stability 
!  Next week: Techniques to analyze and design 

controllers for stability and other feedback 
characteristics 

Context 
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!  Two different notions of stability 

!  Ability of the system to return to equilibrium after 
an arbitrary displacement away from the 
equilibrium 

!  Ability of the system to produce a bounded output 
for any bounded input 

!  For linear systems, these two notions are 
closely related. 

The Concept of Stability 
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The Concept of Stability 

If tipped slightly, the cone 
returns to its original position 

If released, the cone 
falls onto its side 

!  Perturbations from equilibrium 
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!  Bounded input/bounded output 

!  The transient response is characterized by the 
location in the s-plane of the poles of a system  

!  Poles in the right-hand side of the s-plane result in an 
increasing response. 

The Concept of Stability 
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!  A famous example of instability 
!  Amplitude of bridge oscillations grow until 

structural failure 
!  (Bounded input leads to unbounded output) 

Tacoma Narrows, 1940 
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!  Internal Stability Stability (perturbations from 
the equilibrium) 
!  Main focus of linear dynamical systems theory 

!  BIBO stability (Bounded Input/Bounded 
Output) 
!  Main focus of this class 

!  Relative stability 

Types of Stability 
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Internal Stability** 

!  A linear system is internally stable if and 
only if all roots of the characteristic equation 
have negative real part. 

!  This is equivalent to requiring that the poles 
of the system transfer function (=eigenvalues 
of A) lie in the open left half-plane. 

!  For an internally stable            
system, starting from any        
initial condition 

Im(s) 

Re(s) 

! 

x0 " #n, x(t)$ 0 as t$%
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Internal Stability 

!  A linear system with non-
repeated poles with zero 
real part and the 
remaining poles with 
negative real part is 
stable in the sense of 
Lyapunov. 

!  An LTI system with at 
least one pole in the right 
half plane (RHP) is 
unstable.   

Im(s) 

Re(s) 

Im(s) 

Re(s) 
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Internal Stability 

!  A linear system with repeated 
poles (=co-located poles) on 
the imaginary axis, and all 
other poles in the LHP, is 
either stable or unstable. 

!  It cannot be asymptotically 
stable. 

!  Stability of these types of 
systems requires further 
analysis of eigenvectors 
(beyond the scope of this 
class). 

Im(s) 

Re(s) 
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Internal Stability 

Examples: Find the stability of    for  
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Exponential stability 

!  Internally stable LTI systems are also  
asymptotically stable 
 (meaning that x(t) asymptotically approaches 0 as t 
approaches infinity) 

!  As well as exponentially stable   
 (meaning that x(t) is bounded by an exponentially 
decaying function) 

!  Faster convergence of exponentially stable systems 
(as opposed to asymptotically stable systems) means 
better performance 
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Internal stability 

Stable 

Internally 
stable 

Unstable 
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BIBO Stability 

!  “Bounded-Input/Bounded-Output” 
!  A system is said to be BIBO stable if for any bounded 

input, the output remains bounded for all time. 

!  Internal stability ==> BIBO stability 

! 

y(t) = g(t " # )u(# )d#
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BIBO Stability 

!  A bounded input is one for which |u(t)|!M 

!  Which inputs are bounded? 
!  u(t) = 1(t) 
!  u(t) = !(t) 
!  u(t) = eat, a < 0 for t ! 0 
!  u(t) = eat, a = j!"

t 

u(t) 

M 
t 

y(t) 

N 
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BIBO Stability 

!  Example: 
!  Is the system with transfer function    G

(s) = 1/(s+1) BIBO stable? 

!  Answer: 
!  Show that y(t) " My for all t and for some positive constant 

My. 
!  Could alternatively show that G(s) is internally stable and 

therefore also BIBO stable 

!  Can determine BIBO stability by simply 
examining poles of characteristic 
equation. 
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BIBO Stability** 

!  A linear system is BIBO stable if all poles of 
the transfer function have negative real 
part. 

!  For systems in which there is no pole-zero 
cancellation in the transfer function, this is 
the same as requiring all roots           
of the characteristic equation           
to be in the open LHP.  

Im(s) 

Re(s) 
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BIBO Stability 

!  A system with non-
repeated poles with on 
the imaginary axis and 
the remaining poles with 
negative real part is 
marginally stable. 

!  Sinusoidal input at the 
frequency of the poles on 
the imaginary axis will 
cause unbounded output. 

Im(s) 

Re(s) 
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BIBO Stability 

!  An LTI system with at 
least one pole in the right 
half plane (RHP) is 
unstable.   

!  An LTI system with 
repeated poles on the 
imaginary axis is 
unstable.   Im(s) 

Re(s) 

Im(s) 

Re(s) 
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BIBO stability 

Unstable 

BIBO stable 
Marginally 

stable 
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!   Assuming there is no pole-zero cancellation in the 
transfer function, and    are roots of the 
nth order characteristic equation: 

BIBO Stability** 

Stability Pole location Description 
BIBO stable A "i, Re("i)<0  All poles in open LHP 

Marginally stable #"i, Re("i)=0, "i""j ∧ 
$#"k, Re("k)>0   

Any simple poles on 
imaginary axis, and no 
poles in RHP 

Unstable #"i, Re("i)=0, "i="j Any repeated poles on 
imaginary axis, or 

#"i, Re("i)>0  Any poles in RHP 

  

! 

"i, i#{1,!,n}
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!  Determine whether system with the 
characteristic equation 

 is BIBO stable. 
!  Since the polynomial 

 has repeated roots on the imaginary axis, it is 
BIBO unstable. 

Example  

! 

Q(s) = s4 + 2s3 + s2

! 

Q(s) = s4 + 2s3 + s2 = s2(s+1)2
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Examples 

!    

Im(s) 

Re(s) 

Im(s) 

Re(s) 

Im(s) 

Re(s) 

Im(s) 

Re(s) 
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Relative Stability 

Relative stability: 
measured by the 
distance of the root 
from the real axis. 

One algorithm to 
ascertain relative 
stability: the shifting 
of the s-plane axis, 
then check Routh-
Hurwitz criteria. Thus, root r2 is relatively more stable 

than the root r1. 
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Feedback and Stability 

Q(s)=? 

!  Consider the unity feedback system with gain 
K=3 

+ 
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Feedback and Stability 

!  Consider the same system with gain K = 7 

+ 
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Feedback and Stability 

!  Feedback often improves stability. 

!  However, increasing the gain past a certain threshold 
can destabilize a system. 

!  This threshold occurs when at least one root of 
the characteristic equation has real part equal 
to 0. 

!  Increasing the gain can push poles from LHP to the 
RHP.   
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Example 2 

!  For what values of K will the closed-loop 
system be stable? 
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Example 3 

!  For what values of K will the closed-loop 
system be stable? 
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Example 3 

! 

0 = s3 + 2s2 + 4s+ K
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Example 3 

! 

0 = s3 + 2s2 + 4s+ K
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Summary 

!  Conditions for stability 
!  Internal stability 
!  BIBO stability 
!  Marginal stability 
!  Instability 

!  Feedback and stability 
!  Routh-Hurwitz stability criterion  

!  Check for stability without computing roots of 
characteristic equation 

!  Determine the range of parameters that 
guarantees stability 


