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!  Two different notions of stability 

!  Ability of the system to return to equilibrium after 
an arbitrary displacement away from the 
equilibrium (internal stability) 

!  Ability of the system to produce a bounded output 
for any bounded input (BIBO stability) 

!  For linear systems, these two notions are 
closely related.   

Review: General Concept 
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!   Assuming there is no pole-zero cancellation in the 
transfer function, and    are roots of the 
nth order characteristic equation: 

Review: BIBO Stability** 

Stability Pole location Description 
BIBO stable A !i, Re(!i)<0  All poles in open LHP 

Marginally stable "!i, Re(!i)=0, !i!!j ∧ 
#"!k, Re(!k)>0   

Any simple poles on 
imaginary axis, and no 
poles in RHP 

Unstable "!i, Re(!i)=0, !i=!j Any repeated poles on 
imaginary axis, or 

"!i, Re(!i)>0  Any poles in RHP 

  

! 

"i, i#{1,!,n}
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Internal vs. BIBO stability 

!  Internal stability implies BIBO stability 

!  Internal stability is stronger in some sense, because 
BIBO stability can “hide” unstable behaviors which 
don’t appear in the output 

 Consider the transfer function  
!  Zero at s=+1 cancels unstable pole 
!  But is this really BIBO stable?  

!  With no pole-zero cancellation, same conditions 
exist for internal stability as for BIBO stability. 

! 

G(s) =
s "1

(s "1)(s+ 3)
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Review: Feedback & Stability** 

!  Feedback often improves stability. 

!  However, increasing the gain past a certain threshold 
can destabilize a system. 

!  This threshold occurs when at least one root of 
the characteristic equation has real part equal 
to 0. 

!  Increasing the gain can push poles from LHP to the 
RHP.   

!  For what values of K will the system with the 
following characteristic equation be stable? 
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Review: Feedback & Stability 

! 

0 = s3 + 2s2 + 4s+ K

EECE 360, v2.3 7 

Today 

!  Review: 
!  BIBO stability (all poles with negative real part) 
!  Marginal stability (no repeated poles on the 

imaginary axis) 

!  Today 
!  Routh-Hurwitz stability criterion  
!  Introduction to Root Locus 
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!  Consider the polynomial characteristic 
equation 

!  Routh-Hurwitz stability criterion is a test to 
check for stability without computing the 
roots of characteristic equation.  The test 
checks whether or not all roots of a 
polynomial have negative real part. 

!  It is presented here without proof.  More 
details are in Dorf, Chapter 6.2. 

  

! 

Q(s) = sn + an"1s
n"1 +!+ a1s+ a0

Routh-Hurwitz Criterion 
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Routh-Hurwitz Criterion 

!  Necessary and sufficient conditions for low-order 
systems: 
!  First-order: All roots of Q(s)=a1s+a0 are in the LHP if all 

coefficients are positive. 
!  Second-order: All roots of Q(s)=a2s2+a1s+a0 are in the LHP 

if all coefficients are positive. 
!  Third-order: All roots of Q(s)= a3s3+ a2s2+a1s+a0 are in the 

LHP if all coefficients are positive and a1a2-a0a3>0. 

!  Positive coefficients for nth order polynomials are  
necessary but not sufficient conditions for 
stability. 
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Routh-Hurwitz Table 

sn 1 an-2 an-4 ! 

sn-1 an-1 an-3 an-5 ! 

sn-2 bn-1 bn-3 bn-5 

sn-3 cn-1 cn-3 cn-5 

s0 hn-1 

!

!  Create a table based on the coefficients of the 
characteristic equation 

!  The first two rows are taken directly from Q(s) 
!  The remaining rows are computed from these two 

rows 
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Routh-Hurwitz Table 

sn 1 an-2 an-4 ! 

sn-1 an-1 an-3 an-5 ! 

sn-2 bn-1 bn-3 bn-5 

sn-3 cn-1 cn-3 cn-5 

s0 hn-1 

!

!  The number of roots of Q(s) with positive real part 
is equal to the number of sign changes in the 
first column of the Routh-Hurwitz table. 

 Q(s) = sn + an-1sn-1 + … + a1s + a0 
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Routh-Hurwitz Criterion 

One row is 
calculated from 
the two rows 
directly above it.  
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Example 1 
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Example 2: Robotic Arm 
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Root Locus 

!  Performance of a control system is described in terms 
of the location of the roots of the characteristic 
equation in the s-plane. 

!  A desired response of a closed-loop control system 
can be achieved by adjusting one or more system 
parameters (control gains). 

!  Root locus is a method for analysis and design of 
control system 

!  The root locus plot is a graph of the locus of roots as 
one system parameter is varied 
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Root Locus 

!  Developed by W. Evans while a 
graduate student at UCLA 

!  Use the poles and zeros of the 
open-loop system to determine 
the closed-loop poles when 
one parameter is changing 

Walter R. Evans, 
1920-1999 
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!  Consider the unit feedback system with a scalar 
control gain K 

!  The root locus is the path of the roots of the 
characteristic equation in the s-plane as the gain is 
varied (from 0 to infinity) 

Root Locus Method 

1 ( ) 0KG s+ =

K 
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!  Consider the unity feedback system with   
 G(s) = 1/(s(s+2)) 

!  The characteristic equation is 

!  Start by examining K=0: The poles are s = 0, -2. 
!  For 0<K<1, the system is overdamped with poles at 

s =  
!  For K=1, the system is critically damped with poles 

at s = -1, -1. 
!  For K>1, the system is underdamped, with poles at 

s= 

Root Locus Method 

! 

0 =1+ KG(s) =1+ K 1
s(s+ 2)

= s2 + 2s+ K

K!±! 11

11 !±! Kj
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!  Consider the unit feedback system with a scalar 
control gain K 

!  The root locus originates at the poles of G(s) and 
terminates on the zeros of G(s). 

Root Locus Method 

1 ( ) 0KG s+ =

K 
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1 ( ) 0
( )

1 0
( )

( ) ( ) 0

When 0,  this collapses to ( ) 0.
Since the roots of ( ) 0 are the poles of ( ),  those are the
closed-loop poles for 0.

1 ( )
When  is large, ( ) ( ) 0 t

( )

KG s
N sK
D s

D s KN s

K D s
D s G s
K

N sK D s KN s
K D s

+ =

+ =

+ =

= =

=

=

+ = + =
( )

ends to 0
( )

thus the closed-loop poles tend to the roots of ( ) 0,  i.e. the

open-loop zeros, and also to infinity if  is strictly proper.

N s
D s

N s
N
D

=

=

Root Locus Method 
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Example 3: Root Locus  

Root Locus

Real Axis

I
m
a
g
 
A
x
i
s

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

K=0 K=0 

K=1 

K increasing 

K increasing 

! 

0 =1+ KG(s) =1+ K 1
s(s+ 2)

= s2 + 2s+ K
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Example 4 

!  Consider the system with transfer function  

!  The characteristic equation is: 

!  Values of K for KG/(1+KG) to have real roots: 

!  Values of K for KG/(1+KG) to have imaginary roots: 
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Example 4 
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Example 4 
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Example 4: Root Locus 
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Summary 

!  Feedback and stability 
!  Routh-Hurwitz stability criterion  

!  Check for stability without computing roots of 
characteristic equation 

!  Root Locus 
!  Poles and zeros of the open-loop system can 

determine the closed-loop poles as gain K 
increases from 0 to infinity 

!  Starts at poles of open-loop system, ends at zeros 
of open-loop system, or at infinity 


