EECE 360

## Lecture 17

Root Locus

## Dr. Oishi

Electrical and Computer Engineering
University of British Columbia
http://courses.ece.ubc.ca/360
eece360.ubc@gmail.com
Chapter 7.1-7.2
EECE 360, v2. 4

## Review: Proving stability

- Goal: Show that all poles have negative real part. (Recall def'n of stability)
- Several ways to do this:
- Compute roots of characteristic equation
- Use Routh-Hurwitz Criterion (when computing the roots is prohibitively complex)
- Evaluate how poles move in complex plane when one parameter (usually gain K ) is varied from 0 to infinity.


## Today's class

- Review
- Role of feedback on stability
- Routh-Hurwitz criterion
- Root locus
- Introduction
- Gain and phase criterion
- Steps to sketch a root locus


## Review: Routh-Hurwitz criteria

- A stable linear system requires that all poles of the transfer function (roots of the characteristic equation) have negative real part.
- Routh-Hurwitz stability criterion is a test to ascertain without computing the roots, whether or not all roots of a polynomial have negative real part.


## Review: Routh-Hurwitz criteria

- Necessary and sufficient conditions for low-order systems:
- First-order: All roots of $Q(s)=a_{1} s+a_{0}$ are in the LHP if all coefficients are positive.
- Second-order: All roots of $Q(s)=a_{2} s^{2}+a_{1} s+a_{0}$ are in the LHP if all coefficients are positive.
- Third-order: All roots of $Q(s)=a_{3} s^{3}+a_{2} s^{2}+a_{1} s+a_{0}$ are in the LHP if all coefficients are positive and $a_{1} a_{2}-a_{0} a_{3}>0$.
- Positive coefficients for $n^{\text {th }}$ order polynomials are necessary but not sufficient conditions for stability.


## Root Locus Method

- Consider the unit feedback system with a scalar control gain K

- Poles of the closed loop system solve

$$
1+K G(s)=0
$$

- The root locus originates at the poles of $\mathrm{G}(\mathrm{s})$ and terminates on the zeros of $\mathrm{G}(\mathrm{s})$.


## Root Locus

- Performance of a control system is described in terms of the location of the roots of the characteristic equation in the s-plane.
- A desired response of a closed-loop control system can be achieved by adjusting one or more system parameters (control gains).
- Root locus is a method for analysis and design of control system
- The root locus plot is a graph of the locus of roots as one system parameter is varied


## Example 1

- Consider the unity feedback system with $\mathrm{G}(\mathrm{s})=1 /(\mathrm{s}$ ( $\mathrm{s}+2$ ))
- The characteristic equation is

$$
\begin{aligned}
0 & =1+K G(s)=1+K \frac{1}{s(s+2)} \\
& =s^{2}+2 s+K
\end{aligned}
$$

- Start by examining $\mathrm{K}=0$ : The poles are $\mathrm{s}=0,-2$.
- For $0<K<1$, the system is overdamped with poles at $\mathrm{s}=-1 \pm \sqrt{1-K}$
- For $\mathrm{K}=1$, the system is critically damped with poles at $\mathrm{S}=-1,-1$.
- For $\mathrm{K}>1$, the system is underdamped, with poles at $\underset{360, \text { v2. }}{\mathrm{S}}=-1 \pm j \sqrt{K-1}$


## Example 1: Root Locus



EECE 360, v2. 4

## Example 2

- Consider the system with transfer function

$$
G(s)=\frac{s+1}{s^{2}+s+1}
$$

- The characteristic equation is:
- Values of $K$ for $K G /(1+K G)$ to have real roots:
- Values of $K$ for $K G /(1+K G)$ to have imaginary roots:


## Root Locus Method

$$
\begin{aligned}
& 1+K G(s)=0 \\
& 1+K \frac{N(s)}{D(s)}=0 \\
& D(s)+K N(s)=0
\end{aligned}
$$

The root locus originates on the poles of $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})$ (for $\mathrm{K}=0$ ) and terminates on the zeros of $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})$, including those at infinity.

When $K=0$, this collapses to $D(s)=0$.
Since the roots of $D(s)=0$ are the poles of $G(s)$, those are the closed-loop poles for $K=0$.

When $K$ is large, $D(s)+K N(s)=\frac{1}{K}+\frac{N(s)}{D(s)}=0$ tends to $\frac{N(s)}{D(s)}=0$ thus the closed-loop poles tend to the roots of $N(s)=0$, i.e. the open-loop zeros, and also to infinity if $\frac{N}{D}$ is strictly proper.

## Example 2

Suppose
$1+K G(s)=1+K \frac{s+1}{s^{2}+s+1}=0$
$s^{2}+s+1+K s+K=0 \quad$ (Char. Equation)
$s^{2}+(K+1) s+(K+1)=0$
$\Delta=(K+1)^{2}-4(K+1)=K^{2}-2 K-3$
For $\Delta>0, s^{*}(K)=-\frac{1}{2}(K+1) \pm \frac{1}{2} \sqrt{K^{2}-2 K-3}$
For $\Delta<0, s^{*}(K)=-\frac{1}{2}(K+1) \pm j \frac{1}{2} \sqrt{\left|K^{2}-2 K-3\right|}$
(this occurs for $-1<K<3$ )
(roots)

## Example 2

## Example 2: Root Locus

For $K=0, s^{*}(0)=-\frac{1}{2} \pm j \frac{\sqrt{3}}{2} \quad$ Poles of $G(s)$
For $K=3, s^{*}(3)=-\frac{1}{2}(3+1)=-2$
For large $K$,

$$
\begin{aligned}
s^{*}(K) & =-\frac{1}{2}(K+1) \pm \frac{1}{2} \sqrt{K^{2}-2 K+1-4} \\
& =-\frac{1}{2}(K+1) \pm \frac{1}{2} \sqrt{(K-1)^{2}-4} \text { Zero of } G(s) \\
& \approx-\frac{1}{2}(K+1) \pm \frac{1}{2}(K-1)=-1,-K \quad \text { Tends to }-\infty
\end{aligned}
$$

## Sketching Root Locus

- There is an easier way to find points on the root locus
- A simple sketch can be made, just based on the open-loop transfer function $\mathbf{G}(\mathbf{s})$
- Important features on the root locus:
- Where the locus crosses the imaginary axis
- Where the locus is centered
- Where the locus breaks away from the real axis
- Which asymptotes the loci follow as K --> infinity.
- These features can be computed from the zeros and poles of $G(s)$


## Plotting Root Locus

- Control engineers should be able to sketch root locus in a 'back of the envelope' way in practice
- Tools in Matlab for precise root locus plots
- 'rlocus'
- 'pzmap'
- 'damp'
- Goal: Relate location of the poles in the complex plane as a function of a single parameter (control gain) K.



## Important Root Locus features

- Breakaway point


- Each breakaway points is a point where a double (or higher order) root exists for some value of $K$.

EECE 360, v2.4



Root locus for a $2^{\text {nd }}$-order system EECE 360, v2. 4


Evaluation of angle and gain

## Finding Points on the Locus**

- A location $\mathrm{s}^{*}$ is on the locus if

$$
1+K G\left(s^{*}\right)=0
$$

which is equivalent to

$$
\mathrm{G}\left(\mathrm{~s}^{*}\right)=-1 / \mathrm{K}
$$

- Recall that $s$ is a complex number (therefore it has a magnitude and a phase) and assume $\mathrm{K}>0$
- Phase condition

$$
\text { angle }\left[G\left(s^{*}\right)\right]=180^{\circ} \pm 360^{\circ} n
$$

determines which points are on the locus

- The magnitude condition
$\left|G\left(s^{*}\right)\right|=1 / K$
determines the value of $K$ at $s^{*}$


## The 7 Steps to the Root Locus

- Procedure to facilitate rapid sketching of the root locus
- Locate roots of the characteristic equation in a graphical manner in the $s$-plane
- Roots exist on the locus for various values of the single parameter, K.


## Steps to Root Locus

- Step 1: Prepare the root locus sketch
- Step 1.1: Find the char. equation $1+K G(s)=0$
- Step 1.2: Find the $m$ zeros $z_{i}$ and $n$ poles $p_{i}$ of $\mathrm{G}(\mathrm{s})$

$$
G\left(s^{*}\right)=\frac{k\left(s^{*}+z_{1}\right)\left(s^{*}+z_{2}\right) \ldots\left(s^{*}+z_{m}\right)}{\left(s^{*}+p_{1}\right)\left(s^{*}+p_{2}\right) \ldots\left(s^{*}+p_{n}\right)}
$$

- Step 1.3: Draw the poles and zeros on the s-plane
- Step 1.4: Identify number of loci (=n)
- Step 1.5: Exploit symmetry across the real axis


## Steps to Root Locus

- Step 4: Determine the points at which the root locus crosses the imaginary axis
- Evaluate using the Routh-Hurwitz criterion
- Step 5: Find breakaway points
- Loci converge or diverge on the locus at

$$
\frac{d p(s)}{d s}=0, \quad p(s)=-\frac{1}{G(s)}(\text { unity feedback })
$$

- Loci approach/diverge at angles spaced equally about the breakaway point (and with symmetry about the real axis).


## Steps to Root Locus

- Step 2: Locate loci segments on the real axis.
- Locus lie in sections of the real axis left of an odd number of poles and zeros
- Step 3: Find asymptotes
- Total of (n-m) asymptotes
- Angle of asymptotes is

$$
\phi_{A}=\frac{2 q+1}{n-m} \cdot 180, \quad q=0,1, \ldots,(n-m-1)
$$

- Center (intersection) of asymptotes is

$$
\sigma_{A}=\frac{\sum\left(-p_{i}\right)-\sum\left(-z_{i}\right)}{n-m}
$$

## Steps to Root Locus

- Step 6: Determine the angle of departure (from poles) and the angle of arrival (at zeros) using the phase criterion (e.g.,

$$
\begin{aligned}
180 & =\sum_{k} \theta_{z_{k}}-\sum_{k} \theta_{p_{k}} \\
-\theta_{p_{i}} & =180+\sum_{j \neq i} \theta_{p_{j}}-\sum_{k} \theta_{z_{k}} \\
\theta_{z_{i}} & =180+\sum_{k} \theta_{p_{k}}-\sum_{j \neq i} \theta_{z_{i}}
\end{aligned}
$$

- Step 7: Complete the root locus sketch.


## Summary

- Root locus shows evolution of closed-loop poles as one parameter changes.
- A simple set of rules allow the loci to be sketched.
- If details are needed, use Matlab to plot the root locus.
- To develop insight should be able to determine the main features of root locus without a computer.

