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Outline 

!  Review 
!  Frequency response 
!  Bode diagrams for common elements 

!  Today 
!  Sketching Bode diagrams 
!  Performance requirements 
!  Relationship to Root Locus 
!  Gain and phase margin 
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Review: Bode Diagram 

!  Evaluate the gain and phase of a transfer 
function G(s) for s=j! 

!  General procedure: 
!  Start a low frequencies 
!  Identify break points 
!  Approximate gain before and after break points 
!  Approximate phase before and after break points 
!  Effect is cumulative as frequency increases, for 

gain and phase 
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!  1. Constant gain K  
   

!  Log gain 

!  Phase 

Review: Bode Diagram 

! 

G(s) = K

! 

20logG( j") = 20logK

! 

"G( j#) = 00
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!  2. Poles (or zeros) at 
the origin (j!) 

!  Log gain 

!  Phase 

Review: Bode Diagram 

! 

G(s) =
1
sN

! 

20logG( j") = #20N log"

! 

"G( j#) = $900N
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!  3. Poles (or zeros) on  
the real axis (j!"+1) 

!  Log gain 

!  Phase 

! 

G(s) =
1

s" +1Review: Bode Diagram 
! = 1/"#

! 

"# <<1, 20logG( j") $ 0
"# >>1, 20logG( j") $ 20log "#( )

! 

"# <<1, $G( j") % 0
"# >>1, $G( j") % &90
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!  4. Complex conjugate poles (or zeros) 
 (1+(2$/!n)j!+(j!/!n)2) 

!  Log gain 

!  Phase 

! 

G(s) =
1

1+ 2" #n s+ (s #n )
2

Review: Bode Diagram 

! 

" "n <<1, 20logG( j") # 0
" "n >>1, 20logG( j") # $40log " "n( )

! 

" "n <<1, #G( j") $ 0
" "n >>1, #G( j") $ %180
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!  4. Complex conjugate poles (or zeros) 
 (1+(2$/!n)j!+(j!/!n)2) 

!  Important landmarks  

! 

G(s) =
1

1+ 2" #n s+ (s #n )
2

Review: Bode Diagram 

! 

"r ="n 1# 2$ 2

! 

Mp" = G("r ) =
1

2# 1$# 2

! 

G("B ) = 0.707
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!  1. Factor transfer function 

!  2. Plot K0/(j!)n 
!  Gain slope n through K0 at !=1 
!  Phase is -n*90 degrees at low frequencies 

Sketching Bode Diagrams 

! 

G(s) =
K0"i

( j# zi +1)

( j#)n"
j
( j# p j +1)"

k
1+ 2$ k# #n,k + (# #n,k )

2( )
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!  3. Plot remaining terms in ascending break 
point frequencies.   
!  Extend K0/(j!)n slope until first freq. break point.   
!  Change gain slope by ±20dB/decade) for each 

zero/pole  
!  Change phase by ±90 degrees for each zero/pole 

!  4. Identify known points (gain at break points 
and resonant frequencies, phase at break 
points) 

!  5. Smooth linear approximation in gain and 
phase. 

!  See example in Lecture 21 

Sketching Bode Diagrams 
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!  For 2nd-order systems, transient response 
characteristics can be estimated from Bode 
diagrams 

!  Maximum gain 

 occurs at the resonant frequency 

!  Also note the gain at the natural frequency is  

Performance specifications 

! 

"r ="n 1# 2$ 2
! 

Mp" = G("r ) =
1

2# 1$# 2

! 

G( j"n ) =
1
2#
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!  Bandwidth of 1st and 2nd order systems is a good 
measure of the speed of the transient response 

!  In first-order systems, the breakpoint frequency is 
the bandwidth 

!  In second-order systems,  

Performance specifications 

! 

"B

"n

= #1.19$ +1.85  for  0.3 % $ % 0.8
! 

"B =
1
#
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!  Higher 
bandwidth is 
indicative of a 
faster rise time 

Performance specifications 

! 

T1 =
1
s+1

"B =1, # =1

! 

T2 =
1

5s+1
"B = 0.2, # = 5
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!  Higher 
bandwidth is 
indicative of a 
faster rise time 

Performance specifications 

! 

T3 =
100

s2 +10s+100
"B #15, "n =10

! 

T4 =
900

s2 + 30s+100
"B # 40, "n = 30
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!  Steady-state error can be determined from a 
Bode diagram  

!  At low frequencies 

!  Evaluate the gain K0 at ! =1  
!  For type 0 systems, K0=Kp 
!  For type 1 systems, K0 = Kv 
!  For type 2 systems, K0 = Ka 

Performance specifications 

! 

G( j") # K0

( j")n
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!  In Bode plots, we are interested in s = j! 
!  In root locus plots, we are interested in s = %+j! 

such that 1+KG(s)=0 (assuming unity feedback). 

!  For systems whose root locus intersects the 
imaginary axis: 
!  The crossover frequency can be identified on the Bode 

plots where the phase is -180 degrees. 
!  Recall that s which satisfy the characteristic equation have 

a phase  

Relationship to Root Locus 

! 

"G(s) =
#1
K

=180 ± 360n, n${0,1,2,...}



EECE 360, v2.4 17 

!  Consider a simple example 

!  with root locus plot 

!  The gain that results in marginal stability is K=2 

Relationship to Root Locus 
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!  Bode diagram for 
various gains K 

!  Notice that for K<2 
(closed-loop system 
is stable), the phase 
of G(j!c) is greater 
than -180 degrees 

!  For K>2 (unstable) 
the phase is less 
than -180 degrees 

Relationship to Root Locus 
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Relative Stability 

Informal definitions: 
!  The gain margin is the factor by which the gain can 

be increased before instability results.   
!  The phase margin is the amount of phase by which 

G(j!) exceeds -180 degrees when |KG(j!)|=1 

!  These are easily measured on Bode diagrams. 

Derivations and formal definitions will be provided when 
we investigate the Nyquist criterion (next week). 

EECE 360, v2.4 20 

Gain and Phase Margins 
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!  Factor by which the gain can be increased in order to 
achieve marginal stability 

!  Measured where the phase is -180 degrees. 

!  Can be stated as absolute value or in dB 
!  For stability, MG > 0 dB  

!  Reasonable values are often 2-5, or between 
6dB-14dB on a Bode diagram 

Gain Margin 

! 

Gain Margin =
1

KG( j"180)
, "180 = arg #G( j") = $180( )

MG = $20logG( j"180) dB
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!  The phase margin is the difference between -180 
degrees and the phase of the system at the 
crossover frequency 

!  For stability, M& > 0 
!  Reasonable values are in the range 300-600 

!  **What about systems with multiple crossings? 
!  **Need to be very careful in analyzing stability 

through MG and M& on Bode plots.  (e.g., what about 
systems which require a minimum gain for stability?) 

Phase Margin 

  

! 

Phase Margin = M" =180! + arg #G( j$c )( )
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Phase Margin 

!  Consider the open-loop system  

!  With unity feedback, this results in a standard 2nd 
order system  

!  with phase margin 

! 

G(s)
1+G(s)

=
1

1+ 2" #n s+ (s #n )
2

! 

G(s) =
"n

2

s(s+ 2#"n )

  

! 

M" =180! # 90! # tan#1 $c

2%$n

& 

' 
( 

) 

* 
+ 

= tan#1 2% 1
(4% 4 +1)1/ 2 # 2% 2
& 

' 
( 

) 

* 
+ 

1/ 2& 

' 
( ( 

) 

* 
+ + 
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Phase Margin 

!  This can be linearly approximated by 

! 

" = 0.01M#
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Example 

!  Consider the transfer function with Bode plot 
! 

G(s) =
5(1+ s /10)

s(1+ s /2) 1+ (0.6 /50)s+ (1/502)s2( )
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Example 

!  Phase margin and gain margin 
! 

G(s) =
5(1+ s /10)

s(1+ s /2) 1+ (0.6 /50)s+ (1/502)s2( )

GM!30 dB 

PM!500  
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Example 

!  Relevant Matlab functions: 

!  Try ‘margin’ to find gain and phase margins 
!  Try ‘logspace’ to create a frequency vector with log-

scale spacing 

! 

G(s) =
5(1+ s /10)

s(1+ s /2) 1+ (0.6 /50)s+ (1/502)s2( )
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Summary 

!  Today 
!  Sketching Bode diagrams 
!  Performance requirements 
!  Phase and gain margin 

!  Next time 
!  Lead and lag control 


