EECE 360

Lecture 25

Nyquist Stability Criterion

Dr. Oishi

Electrical and Computer Engineering
University of British Columbia, BC
http://courses.ece.ubc.ca/360
eece360.ubc@gmail.com
EECE 360, v2. 4
Chapters 9.2-9.4

Review: Phase-Lag Controller

- Lag controllers provide attenuation and improve steady-state error

Review: Phase-Lead Controller

- Lead controllers add phase angle

Today's Lecture

- Review: Control design through Bode diagrams
- Lead control design
- Lag control design
- Today
- Cauchy's theorem
- Nyquist criterion

Harold Nyquist

- Born in 1889 in Sweden
- Died in 1976, USA
- Yale PhD, 1917
- Career at Bell Labs
- 138 patents
- Nyquist diagram, criterion, sampling theorem
- Laid the foundation for information theory, data transmission and negative feedback theory

Mapping Contours in the s-Plane

- Nyquist criterion based on Cauchy theorem on functions of a complex variable
- Mapping contours in the s-plane

Characteristic $\quad 1+L(s)=0$
equation:

The Nyquist Diagram

- Polar plot of the magnitude and phase of the openloop system.
- Easily obtained from Bode diagrams of $\mathrm{G}_{\mathrm{c}}(\mathrm{s}) \mathrm{G}(\mathrm{s})$.
- Alternative way to analyze stability of a closed-loop system, based on analysis of the open-loop system.
- Procedure: Evaluate Nyquist plot (or diagram) according to Nyquist criterion
- Theory for Nyquist criterion based on Cauchy's theorem.

Mapping Contours in the s-Plane

- Use $F(s)$ to map values of s, evaluated along a specific closed contour in the complex plane, to another closed contour in the complex plane.

Mapping Contours in the s-Plane
Mapping Contours in the s-plane

S

$$
F(s)=\frac{s}{s+2}
$$

Cauchy's Theorem

S

$$
F(s)=s /(s+1 / 2)
$$

"Principle of the Argument"

- If a contour Γ_{s} in the s-plane
- encircles Z zeros of $F(s)$ and P poles of $F(s)$
- does not pass through any poles of zeros of $\mathrm{F}(\mathrm{s})$
- is traversed clockwise
- Then the corresponding contour Γ_{F} in the $F(s)$-plane encircles the origin of the F (s)-plane $\mathrm{N}=\mathrm{Z}-\mathrm{P}$ times in the clockwise direction.
EECE 360, v2.4

Cauchy's Theorem

- An encirclement of 0 arises when a zero or pole of $F(s)$ lies within the contour

EECE 360, v2.4

Cauchy's Theorem

$Z=3, P=1$

$N=3-1=2$

The Nyquist Criterion

- Choose the contour in the s-plane to be the Nyquist contour
- The Nyquist contour encircles the entire right-half plane
- Goal: Find roots of the closed-loop char. eqn. which are in the RHP, by applying Cauchy's Theorem.

Cauchy's Theorem

$Z=0, P=1$

$N=0-1=-1$

The Nyquist Criterion*

- Evaluate the function

$$
\begin{aligned}
F(s) & =1+K G_{c}(s) G(s) \\
& =\frac{D(s)+K N(s)}{D(s)}
\end{aligned}
$$ along the Nyquist contour

- $Z=$ zeros of $F(s)=$ poles of closed-loop system
- $P=$ poles of $F(s)=$ poles of open-loop system
- $\mathrm{N}=$ number of clockwise encirclements of 0

The Nyquist Criterion

- This is equivalent to analyzing the function

$$
\begin{aligned}
F^{\prime}(s) & =F(s)-1 \\
& =1+K G_{c}(s) G(s)-1 \\
& =K G_{c}(s) G(s)
\end{aligned}
$$

for encirclements about -1. **

- Thus it is usually more convenient to consider this function than $1+\mathrm{KG}_{\mathrm{c}}(\mathrm{s}) \mathrm{G}(\mathrm{s})$
- The $\mathrm{F}^{\prime}(\mathrm{s})$-plane plot (aka the Nyquist plot) can be easily obtained from Bode diagrams of $\mathrm{G}_{\mathrm{c}}(\mathrm{s}) \mathrm{G}(\mathrm{s})$
- The Nyquist plot is the polar plot of the magnitude and phase of the open-loop system

Relationship to Bode diagram

$$
\begin{aligned}
G(j \omega) & =\frac{K}{j \omega(j \omega \tau+1)}=\frac{K}{j \omega-\omega^{2} \tau} \\
& =\frac{-K \omega^{2} \tau}{\omega^{2}+\omega^{4} \tau^{2}}-\frac{j K \omega}{\omega^{2}+\omega^{4} \tau^{2}} \\
|G(\omega)| & =\frac{K}{\left(\omega^{2}+\omega^{4} \tau^{2}\right)^{\frac{1}{2}}} \\
\phi(\omega) & =-\tan ^{-1}\left(\frac{1}{-\omega \tau}\right)
\end{aligned}
$$

The Nyquist Criterion ${ }^{* *}$

- The closed-loop system with is stable if and only if the number of counter-clockwise encirclements of -1 is equal to the number of open-loop poles in the right-half plane.
- The closed-loop system which is open-loop stable (no open-loop poles in RHP) is stable if and only if there are no encirclements of -1 .
(Recall that $\mathrm{Z}=$ number of roots of characteristic equation of closed-loop system in the RHP, so for stability we want to have $\mathrm{Z}=0$.)

Example 1: Two real poles

- Consider $G(s) H(s)=\frac{100}{(s+1)(s / 10+1)}$

$P=0$, hence for stability we require $Z=N=0$,
i.e. the contour must not encircle the -1 point in the $G H(s)$-plane.

Summary so far...

- Map the Nyquist contour Γ_{s} to Γ_{L} using the loop gain $\mathrm{L}(\mathrm{s})=\mathrm{G}_{\mathrm{c}}(\mathrm{s}) \mathrm{G}(\mathrm{s})$
- Count the net number of encirclements of the point $(-1,0)$ by drawing a line from -1 to infinity in any direction. This is N .
- For a closed-loop system to be stable, $\mathrm{N}=-\mathrm{P}$, where P is the number of open-loop poles in the RHP.
- If $N \neq-P$, the closed-loop system is not stable.

Nyquist plot for pole + int.

- Calculate the Nyquist plot by examining parts of the s-plane contour individually
- 1. The portion at the origin
- 2. Along the positive imaginary axis: from $\omega=0^{+}$to $\omega=+\infty$
-3. From $\omega=+\infty$ to $\omega=-\infty$
- 4. Along the negative imaginary axis: from $\omega=-\infty$ to 0^{-}

Example 2: Pole + integrator

- Consider $G H(s)=\frac{K}{s(\tau s+1)}$

Cauchy's Theorem requires
that the contour cannot pass through the pole EECE 360, v2. 4

Modified Nyquist contour which skirts the origin

22

Nyquist plot for $G(s)=\frac{1}{s(\tau s+1)}$

- 1.The origin
- Cannot have poles occurring on the contour, so adjust the contour slightly
- Add small circular detour in the s-plane $s=\varepsilon e^{j \phi}, \quad \phi=-90^{\circ}$ at $\omega=0^{-}$to $\phi=+90^{\circ}$ at $\omega=0^{+}$
- Therefore the Nyquist plot will be

$$
\lim _{\varepsilon \rightarrow 0} K G(s)=\lim _{\varepsilon \rightarrow 0} \frac{K}{\varepsilon e^{j \phi}}=\left(\lim _{\varepsilon \rightarrow 0} \frac{K}{\varepsilon}\right) e^{-j \phi}
$$

a semi-circle of infinite radius from $+90^{\circ}$ at $\omega=0^{-}$to -90° at $\omega=0^{+}$.

Nyquist plot for ${ }^{G(s)=} \frac{1}{s(\tau s+1)}$

- 2. Plot the frequency response $\mathrm{G}(\mathrm{j} \omega)$ for positive ω.

3. Portion from $\omega=+\infty$ to $\omega=-\infty$
$\lim _{r \rightarrow \infty} G H(s)=\lim _{r \rightarrow \infty}\left|\frac{K}{\left(\tau r^{2}\right)}\right| e^{-2 j \phi}$
-180° at $\omega=+\infty$ to $+180^{\circ}$ at $\omega=-\infty$
Magnitude is zero when r is infinite

Example: 2 poles + integrator

It is possible to encircle the -1 point. \rightarrow The system is unstable with roots in the right-hand s-plane.

Example: 2 poles + integrator

$$
\begin{aligned}
& G H(s)=\frac{K}{s\left(\tau_{1} s+1\right)\left(\tau_{2} s+1\right)} \\
& G H(j \omega)=\frac{-K\left(\tau_{1}+\tau_{2}\right)-j K(1 / \omega)\left(1-\omega^{2} \tau_{1} \tau_{2}\right)}{1+\omega^{2}\left(\tau_{1}{ }^{2}+\tau_{2}{ }^{2}\right)+\omega^{4} \tau_{1}^{2} \tau_{2}{ }^{2}} \\
& |G H(\omega)|=\frac{K}{\sqrt{\omega^{4}\left(\tau_{1}+\tau_{2}\right)^{2}+\omega^{2}\left(1-\omega^{2} \tau_{1} \tau_{2}\right)^{2}}} \\
& \phi(\omega)=-\tan ^{-1} \omega \tau_{1}-\tan ^{-1} \omega \tau_{2}-\pi / 2 \\
& \lim _{\omega \rightarrow \infty}|G H(\omega)|=0 \\
& \lim _{\omega \rightarrow \infty} \phi(\omega)=-3 \pi / 2=-270^{\circ}
\end{aligned}
$$

Example: 2 poles + integrator

- The system is stable when $\frac{-K \tau_{1} \tau_{2}}{\tau_{1}+\tau_{2}} \geq-1$

- Consider the case when $\tau_{1}=1, \tau_{2}=1$. For stability, $\mathrm{K} \leq 2$ is required.

