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Today'’s lecture

= Review
= Nyquist criterion

= Examples with 0 RHP poles in the open-loop
system

= Moving on...
= Nyquist for open-loop unstable systems
= Relative stability (gain margin, phase margin)
= Examples
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Review: The Nyquist Criterion™

Jo

= Equivalent to evaluating T N=2Z-P
F'(s)=F(s)-1
=1+KG (5)G(s) -1
=KG _ (5)G(s)
along the Nyquist contour, /Radius = r
with e

= Z = # closed-loop poles in RHP|®
= P = # open-loop poles in RHP {

A
= N = # clockwise encirclements
of -1

» **7=() for closed-loop stability
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Review: The Nyquist Criterion

= The closed-loop system with is stable if and only if
the number of counter-clockwise encirclements of -1
is equal to the number of open-loop poles in the
right-half plane.

= The closed-loop system which is open-loop stable (no
open-loop poles in RHP) is stable if and only if there
are no encirclements of -1.

(Recall that Z = number of roots of characteristic
equation of closed-loop system in the RHP, so for
stability we want to have Z=0.)
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Example 1: Two real poles

. 100
= Consider G()H(s)=————-
(s+D(s/10+1)
Jv
A Negative frequency
—w=-0.76
TS0~ . GH(s)-plane
-~ IV X
—w=-32 s \\
[ = \\ w=0
1\ I\ .
LI i =10
7 m I
IV+ w=32
| Nyquist Positive
1 contour o6 frequency
w =
o II

P =0, hence for stability we require Z =N =0,
i.e. the contour must not encircle the -1 point in the GH (s)-plane.
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Procedure for Stability by Nyquist

= Map the Nyquist contour I'; to ', using the loop gain
L(s)=G(s)G(s)

= Count the net number of encirclements of the point
(-1,0) by drawing a line from -1 to infinity in any
direction and counting the left-to-right and right-to-
left crossings. This is N.

= For a closed-loop system to be stable, N=-P, where P
is the number of open-loop poles in the RHP.

= If N#-P, the closed-loop system is not stable.
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Open-loop unstable systems

w=0" J‘{,
= Consider the open-loop
unstable system

GH(s)-plane

Kl
G(s) = s(s—1)

w=+o

w=—0

4
=

= The number of closed-
loop roots in the RHP is
Z=N+P=1+1=2, =0
therefore the closed-loop
system is unstable.
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Open-loop unstable systems

. " jv
= Consider the open-loop w=0" g

unstable system GH(s)-plane

K (1+K,s)
s(s—1) No=-—=

s For -K1K2<-1, 7KIK2/' =i ©= +o

Z=N+P=-1+1=0, so
the closed-loop system
is stable.

u F0r 'K1K2>'1,
Z=N+P=+1+1=2, so
the closed-loop system

is unstable.
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G(s)




Non-minimum phase system Relative Stability
= Consider the L = The distance between the (-1,0) point and
open-loop system \ the Nyquist diagram of the open-loop system
‘IIQVII'TE a pole in theg , is @ measure of the relative stability of the
ke P ! /v/éf closed-loop system
GO =" /;
S = Gain and phase margin can be measured
& T e on the Nyquist diagram from the (-1,0) point
s For -2K<-1, Z=N+P=1+0=1, so the closed-loop = The (-1,0) point corresponds to the
system is unstable. frequencies with 0dB gain and -180° phase.

= For -2K > -1, Z=N+P=0+0=0, so the closed-loop

sgstem is stable.
4
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Relative Stability

1Im[G(s)]

Relative Stability

K> K, > K,

Re[=G(5)1
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L
Relative Stability

= The gain margin is the increase in the system gain
when phase =-180° that will result in a marginally
stable system with intersection of the -1+j0 on the
Nyquist diagram

= The phase margin is the amount of phase shift of
the GH Nyquist plot at unity magnitude that will
result in a marginally stable system with intersection
of the -1+j0 point on the Nyquist diagram

EECE 360, v2.4 13

L
Relative Stability
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Common Transfer Functions

0°
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Common Transfer Functions

G(s) = K
(5T, +1)(sT, +1)
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Common Transfer Functions
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Common Transfer Functions

= For more functions, see Dorf Table 9.6.

= Matlab: ‘nyquist’
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Examples

Nyquist Diagram
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