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Plot Nyquist diagram

= Evaluate open-loop transfer function G(s) along Nyquist
contour

Evaluate Nyquist criterion

= Identify P = # of open-loop poles in RHP

= Identify N = # of clockwise encirclements of -1
Determine stability

= If Z = N+P = 0, then the closed-loop system with unity
feedback is stable.

= If not, the closed-loop system with unity feedback is NOT
stable.

Variations:

= Find the value of K for which the system will be stable or
unstable
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Context

= Modeling
= State-space
= S-domain
= Classical control (s-domain, freg. response)
= Root Locus
= Bode
= Nyquist
= Modern control (state-space)
= Full-state feedback
=« Output feedback
=« Controllers and observers
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Today'’s lecture

= Full-state feedback regulation
= Controllability
= Ackerman’s formula for controller synthesis

= Next lectures:

= Output-based regulation
= Observability
= Ackermann’s for observer synthesis

= Separation Principle
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State Feedback: Regulation

= Consider the state feedback controller where
K is constant feedback gain matrix

x=Ax+Bu, u=-Kx
= Then one can write
X = Ax + B(-Kx)
=(A-BK)x
= Whereas the poles of the open-loop system
are given by the eigenvalues of A, the poles

of the closed-loop system are given by the
eigenvalues of (A-BK)

EECE 360, v2.4 5

State Feedback: Regulation

= Full-state feedback

= The control law System Model
u=-Kxis
computed by

assuming that the

entire state vector x e — ——

is available u

|

|

= This means that all :
elements of x must 1 K

|

|

|

|

x = Ax + Bu

\ 4

A

be either
= directly measured, or
= estimated from

measurements of e it
other combinations of
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State Feedback: Tracking

= Full-state feedback

System Model

u

v

X = Ax + Bu

X = Ax + Bu,

i
u=-Kx+r !
i
|
i

Control Law

-K

]
I
I
I
|
i
]
I
Full-state feedback 1

X=Ax+B(-Kx+7r)

=(A-BK)x+ Br

= Eigenvalues of (A-BK) determine state-
transition matrix
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Controllability

= The eigenvalues of (A-BK) can be arbitrarily assigned
when the system [A,B,C,D] is controllable.

= A system is controllable if there exists a control u(t)
that can transfer any initial state x(0) to any desired
state x(t) in a finite time T.

x(T)

x(0)
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Controllability

= The eigenvalues of (A-BK) can be arbitrarily assigned
when the system [A,B,C,D] is controllable.

= A system is controllable if there exists a control u(t)
that can transfer any initial state x(0) to any desired
state x(t) in a finite time T.

= The controllability matrix
S.=[B AB A’B --- A"'B]

must have rank n for the system [A,B,C,D] to be
controllable. (S, is “full-rank”.)

= When S is full-rank, det(S,)+#0
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Example: Spring-Mass-Damper

= System and input matrices >
wall S,
0 1 0 frictionz k
A = _i _i s B =[ ] /—/7 é
M M 1 s
M
= Controllability matrix 1 l
O 1 v(r) u(r)
Sc = 1 _i
M

To test for controllability, |S.|=0-1=-1
= Therefore the system is controllable.
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Example: Spring-Mass-Damper

= The open-loop poles are located where

X b Wall
0= ST+ —s+ — friction

b

= RANVVVVM

= With the control u = -Kx, the closed-

loop poles are located where 1 l
v(1) u(r)

0=s2+(%+k2)s+(%+kl)

= Because the system is controllable, the
poles of the closed-loop can be placed
anywhere in the complex plane.
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Example 2
Y0  sdy(O) 3O o
dr dr’ dt

Withx, =y, x, =dy/dt, x, =d’y/dt’
0 1 0 0
0 0 1|x+]|0
-2 -3 -5 1
|u=—1<x=-[k1 k, k3]x| (state feedback, regulator)
0 1 0
0 0 1
2-k -3-k, -5-k
det(s] — A+ BK) = 5" +(5+ky)s* + B+k,)s +(2+k,)

Control canonical form

Xx=Ax+ Bu = u

A-BK =
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Example 2 Example 2

. . Choosing characteristic equation as
= Controllability matrix: (5% +2Em,5 47 )(s +Eo) Want rapid response
and a low overshoot

[0 | Specifying £ =0.8 and 7, < 14 then
AB=|1 4

‘T tw, 080,

(s +9.65+36)(s +4.8) = s* +14.45° +82.15 +172.8

<1 is satisfied with w, =6

Comparing with s* +(5+k,)s” + 3+ k,)s + (2 +k,)

1Sc|= 8 (1) -15 —0-0+10-1)=-1 gives k, =170.8, k, =79.1, k, =9.4
s o» K =[1708 79.1 9.4]
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Example: Pendulum on a Cart Example: Pendulum on a Cart

= Control input: force acting on the cart = Obtain equations of motion by summing
= State: position and velocity of the cart and rotational forces acting on the two bodies
position and rotational velocity of the mass. = Linearize around 6 =

http://www.engin.umich.edu/group/ctm/examples/pend/invpen.html
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Example: Pendulum on a Cart

iC
) 1]
@)

D)
1)

= State-space equations

1 [0 1 0 g 0

p _c(l+mlp migl’ ol . I+mf
|7 IMem)+ Mo’ I +m)+ Mml X1 | 1@V + m) + Mml?
& |0 0 0 1e|* 0
. -mlb 1V +m. . ml
sl [0 mgl(M +1m) q»

IM + 1)+ M T(M +m) + Ml
X

1 00 0)x| [0
¥= + |u
0 0 1 0fj&| |0

L3

I +m) + Mml®

= (Note this is a single input, multi-output system.)
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Example: Pendulum on a Cart
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= Problem statement: Design a controller to
stabilize the system.

= First: Is the system controllable?

Check by finding the rank of the controllability
matrix

S.=[B AB A’B A’B]

= Second: Then design a controller, or if the system
is not controllable, determine if it is stabilizable.

18
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Controllability

iC
) 1]
@)

D)
1)

= In Matlab,

= use ‘ctrb’ to find the controllability matrix numerically

= use ‘rank’ to find the rank of the controllability matrix

= Note: Using ‘det’ to find the determinant of the
controllability matrix is not numerically robust and
generally not a good idea. (e.g., How do you
distinguish between low-magnitude eigenvalues of an
ill-conditioned matrix and 0 eigenvalues of a matrix that
is genuinely singular?)
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Ackermann’s Formula
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= Method for pole placement for SISO systems
= Presented without derivation here

= Uses the Cayley-Hamilton theorem, which states that
a matrix must satisfy its own characteristic equation

= Related: Bass-Gura formula

= For MIMO systems, K is not unique. Other methods
must be used.
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Ackermann’s Formula

= The state feedback gain matrix
K =k k, k ] where u(t) = r(t) - Kx(¢)

that produces the desired characteristic equation

qg(s)=s"+as"" ++a

n

is given by

where K = [0 0 I]Sc_lq(A)

S=[B 4B A"'B] and q(d)= A"+, A" +-+a

EECE 360, v2.4 21

Example: Spring-Mass-Damper

= Consider a spring-mass damper system with control
law u = -Kx. Find K'such that the closed-loop system
has damping ratio € and natural frequency w,,.

» The desired closed-loop characteristic equation is
q(s)=s"+ 28w, s+ wn2
= Compute the controllability matrix and its inverse

0 1
Sc =[B AB]= | _%
oo !
1 0
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Example: Ackermann’s Form.

= The characteristic equation in terms of A is
q(A) = A> +2Lw, A+ o,’, therefore the control gain is

[ b

K=[0 1]? é}(A2+2§wnA+wn21)

o 17V 0o 1 )
e b +2§wn_i s +w,1
M M M
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Example: Ackermann’s Form.

= The control gain to achieved the desired closed-loop
poles is

= Note that the control gain is the difference between
the desired closed-loop and actual open-loop
coefficients of the characteristic equation.
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Example: Ackermann’s Form.

= Check: The closed-loop system is

i =(A-BK)x
o 1] [o]; ,
=1l . _L}_ 1}[% X ZCwn—ﬁ])x
M M
0 1 0 1
= - X
_ﬁ _ﬁ a)ﬂ2 - % 2:&)” - %
0 1
= ) X
w,” 2w,

= which has poles at 0=|s-(A-BK)|=s(s+2Cw,)+m,2
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Using Matlab

ACKER Pole placement gain selection using Ackermann's formula.

K = ACKER(A,B,P)| calculates the feedback gain matrix K such
th stem

X = Ax + Bu

with a feedback law of u = -Kx has closed loop poles at the
values specified in vector P, i.e., P = eig(A-B*K).

Note: This algorithm uses Ackermann's formula. This method
is NOT numerically reliable and starts to break down rapidly
for problems of order greater than 10, or for weakly controllable

systems. A warning message is printed if the nonzero closed-loop

poles are greater than 10% from the desired locations specified
inP.

See also PLACE.
EECE 360, v2.4
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Using Matlab

PLACE Pole placement technique

K= PLACE(A,B,P)| computes a state-feedback matrix K such that
the eigenvalues of A-B*K are those specified in vector P.

No eigenvalue should have a multiplicity greater than the
number of inputs.

[K,PREC,MESSAGE] = PLACE(A,B,P) returns PREC, an estimate of
how

closely the eigenvalues of A-B*K match the specified locations P

(PREC measures the number of accurate decimal digits in the actual

closed-loop poles). If some nonzero closed-loop pole is more than

10% off from the desired location, MESSAGE contains a warning

message.

See also ACKER.
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Controllability Summary

= A system (A,B,C,D) is controllable if its
controllability matrix S is full rank.

= The closed-loop poles of a controllable system
can be placed anywhere in the complex plane.

= Choose the desired pole location, then compute
the gain K required to achieve those locations

= Ackermann’s formula for SISO systems (Matlab’s
‘acker’)

Matlab’s ‘place’ for MIMO systems
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Summary

Full-state feedback for regulation or tracking

For a controllable system, we can arbitrarily
assign the closed-loop poles through full-state
feedback

To test for controllability: the controllability
matrix S should be full-rank.

Next time:
= Observability
» Designing observers
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