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Review: The Nyquist Criterion 

!  Plot Nyquist diagram 
!  Evaluate open-loop transfer function G(s) along Nyquist 

contour 

!  Evaluate Nyquist criterion 
!  Identify P = # of open-loop poles in RHP 
!  Identify N = # of clockwise encirclements of -1 

!  Determine stability 
!  If Z = N+P = 0, then the closed-loop system with unity 

feedback is stable. 
!  If not, the closed-loop system with unity feedback is NOT 

stable. 

!  Variations: 
!  Find the value of K for which the system will be stable or 

unstable 

** 
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Context 

!  Modeling 
!  State-space 
!  s-domain 

!  Classical control (s-domain, freq. response) 
!  Root Locus 
!  Bode 
!  Nyquist  

!  Modern control (state-space) 
!  Full-state feedback 
!  Output feedback 
!  Controllers and observers 
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Today’s lecture 

!  Full-state feedback regulation 
!  Controllability 
!  Ackerman’s formula for controller synthesis 

!  Next lectures: 
!  Output-based regulation 

!  Observability 
!  Ackermann’s for observer synthesis 

!  Separation Principle 
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State Feedback: Regulation 

!  Consider the state feedback controller where 
K is constant feedback gain matrix 

!  Then one can write 

!  Whereas the poles of the open-loop system 
are given by the eigenvalues of A, the poles 
of the closed-loop system are given by the 
eigenvalues of (A-BK) 

! 

˙ x = Ax + Bu, u = "Kx

! 

˙ x = Ax + B("Kx)
= (A " BK)x
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State Feedback: Regulation 

!  Full-state feedback 
!  The control law 

 u=-Kx is 
computed by 
assuming that the 
entire state vector x 
is available 

!  This means that all 
elements of x must 
be either 
!  directly measured, or 
!  estimated from 

measurements of 
other combinations of 
states 
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State Feedback: Tracking 

!  Full-state feedback 

!  Eigenvalues of (A-BK) determine state-
transition matrix 

r

! 

˙ x = Ax + Bu,
u = "Kx + r

! 

˙ x = Ax + B("Kx + r)
= (A " BK)x + Br
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Controllability 

!  The eigenvalues of (A-BK) can be arbitrarily assigned 
when the system [A,B,C,D] is controllable. 

!  A system is controllable if there exists a control u(t) 
that can transfer any initial state x(0) to any desired 
state x(t) in a finite time T. 

x(0) 

x(T) 
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Controllability 

!  The eigenvalues of (A-BK) can be arbitrarily assigned 
when the system [A,B,C,D] is controllable. 

!  A system is controllable if there exists a control u(t) 
that can transfer any initial state x(0) to any desired 
state x(t) in a finite time T. 

!  The controllability matrix  

 must have rank n for the system [A,B,C,D] to be 
controllable. (SC is “full-rank”.) 

!  When SC is full-rank, det(SC)!0 

  

! 

SC = [B AB A2B ! An"1B]
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!  System and input matrices 

!  Controllability matrix 

!  To test for controllability, |SC|=0-1=-1 
!  Therefore the system is controllable. 

Example: Spring-Mass-Damper 
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!  The open-loop poles are located where  

!  With the control u = -Kx, the closed-
loop poles are located where  

!  Because the system is controllable, the 
poles of the closed-loop can be placed 
anywhere in the complex plane. 

Example: Spring-Mass-Damper 
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Example 2 
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Control canonical form 

(state feedback, regulator) 
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Example 2 

!  Controllability matrix: 

! 

SC =

0 0 1
0 1 "5
1 "5 22

= 0 " 0 +1(0 "1) = "1
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Example 2 
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Want rapid response 
and a low overshoot 
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!  Control input: force acting on the cart  
!  State: position and velocity of the cart and rotational 

position and rotational velocity of the mass. 

Example: Pendulum on a Cart 

http://www.engin.umich.edu/group/ctm/examples/pend/invpen.html  
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!  Obtain equations of motion by summing 
forces acting on the two bodies 

!  Linearize around ! = " 

Example: Pendulum on a Cart 
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!  State-space equations 

!  (Note this is a single input, multi-output system.) 

Example: Pendulum on a Cart 
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!  Problem statement: Design a controller to 
stabilize the system. 

!  First: Is the system controllable? 
 Check by finding the rank of the controllability 
matrix 

!  Second: Then design a controller, or if the system 
is not controllable, determine if it is stabilizable. 

Example: Pendulum on a Cart 

! 

SC = [B AB A2B A3B]
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!  In Matlab,  
!  use ‘ctrb’ to find the controllability matrix numerically 
!  use ‘rank’ to find the rank of the controllability matrix 
!  Note: Using ‘det’ to find the determinant of the 

controllability matrix is not numerically robust and 
generally not a good idea.  (e.g., How do you 
distinguish between low-magnitude eigenvalues of an 
ill-conditioned matrix and 0 eigenvalues of a matrix that 
is genuinely singular?) 

Controllability 
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!  Method for pole placement for SISO systems 
!  Presented without derivation here 
!  Uses the Cayley-Hamilton theorem, which states that 

a matrix must satisfy its own characteristic equation 
!  Related: Bass-Gura formula 

!  For MIMO systems, K is not unique.  Other methods 
must be used. 

Ackermann’s Formula 
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Ackermann’s Formula 

!  The state feedback gain matrix 

that produces the desired characteristic equation 

is given by 

where 
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Example: Spring-Mass-Damper 

!  Consider a spring-mass damper system with control 
law u = -Kx.  Find K such that the closed-loop system 
has damping ratio # and natural frequency $n. 

!  The desired closed-loop characteristic equation is  

!  Compute the controllability matrix and its inverse 

! 

q(s) = s2 + 2"#ns+#n
2
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Example: Ackermann’s Form. 

!  The characteristic equation in terms of A is 

! 
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Example: Ackermann’s Form. 

!  The control gain to achieved the desired closed-loop 
poles is  

!  Note that the control gain is the difference between 
the desired closed-loop and actual open-loop 
coefficients of the characteristic equation.  ! 
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Example: Ackermann’s Form. 

!  Check: The closed-loop system is  

!  which has poles at 0=|s-(A-BK)|=s(s+2#$n)+$n
2  
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Using Matlab 
ACKER  Pole placement gain selection using Ackermann's formula. 

    K = ACKER(A,B,P)  calculates the feedback gain matrix K such 
that the single input system 
            . 
            x = Ax + Bu  

    with a feedback law of  u = -Kx  has closed loop poles at the  
    values specified in vector P, i.e.,  P = eig(A-B*K). 

    Note: This algorithm uses Ackermann's formula.  This method 
    is NOT numerically reliable and starts to break down rapidly 
    for problems of order greater than 10, or for weakly controllable 
    systems.  A warning message is printed if the nonzero closed-loop 
    poles are greater than 10% from the desired locations specified  
    in P. 

    See also  PLACE. 
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Using Matlab 

PLACE  Pole placement technique 

    K = PLACE(A,B,P)  computes a state-feedback matrix K such that 
    the eigenvalues of  A-B*K  are those specified in vector P. 
    No eigenvalue should have a multiplicity greater than the  
    number of inputs. 

    [K,PREC,MESSAGE] = PLACE(A,B,P)  returns PREC, an estimate of 
how 
    closely the eigenvalues of A-B*K match the specified locations P 
    (PREC measures the number of accurate decimal digits in the actual 
    closed-loop poles).  If some nonzero closed-loop pole is more than  
    10% off from the desired location, MESSAGE contains a warning  
    message.  

    See also  ACKER. 
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!  A system (A,B,C,D) is controllable if its 
controllability matrix SC is full rank. 

!  The closed-loop poles of a controllable system 
can be placed anywhere in the complex plane.   

!  Choose the desired pole location, then compute 
the gain K required to achieve those locations 

!  Ackermann’s formula for SISO systems (Matlab’s 
‘acker’) 

!  Matlab’s ‘place’ for MIMO systems 

Controllability Summary 
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Summary 

!  Full-state feedback for regulation or tracking 
!  For a controllable system, we can arbitrarily 

assign the closed-loop poles through full-state 
feedback 

!  To test for controllability: the controllability 
matrix SC should be full-rank. 

!  Next time: 
!  Observability 
!  Designing observers 


