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Although initially introduced and studied in the late 1960s and 
early 1970s, statistical methods of Markov source or hidden Markov 
modeling have become increasingly popular in the last several 
years. There are two strong reasons why this has occurred. First the 
models are very rich in mathematical structure and hence can form 
the theoretical basis for use in a wide range of applications. Sec- 
ond the models, when applied properly, work very well in practice 
for several important applications. In this paper we attempt to care- 
fully and methodically review the theoretical aspects of this type 
of statistical modeling and show how they have been applied to 
selected problems in machine recognition of speech. 

I. INTRODUCTION 

Real-world processes generally produce observable out- 
puts which can be characterized as signals. The signals can 
bediscrete in nature(e.g.,charactersfrom afinitealphabet, 
quantized vectors from a codebook, etc.), or continuous in 
nature (e.g., speech samples, temperature measurements, 
music, etc.). The signal source can be stationary (i.e., its sta- 
tistical properties do not vary with time), or nonstationary 
(i.e., the signal properties vary over time). The signals can 
be pure (i.e., coming strictly from a single source), or can 
be corrupted from other signal sources (e.g., noise) or by 
transmission distortions, reverberation, etc. 

A problem of fundamental interest i s  characterizing such 
real-world signals in terms of signal models. There are sev- 
eral reasons why one is interested in applying signal models. 
First of all, a signal model can provide the basis for a the- 
oretical description of a signal processing system which can 
be used to process the signal so as to provide a desired out- 
put. For example if we are interested in enhancing a speech 
signal corrupted by noise and transmission distortion, we 
can use the signal model to design a system which will opti- 
mally remove the noise and undo the transmission distor- 
tion. A second reason why signal models are important i s  
that they are potentially capable of letting us learn a great 
deal about the signal source (i.e., the real-world process 
which produced the signal) without having to have the 
sourceavailable. This property i s  especially important when 
the cost of getting signals from the actual source i s  high. 
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In this case, with a good signal model, we can simulate the 
source and learn as much as possible via simulations. 
Finally, the most important reason why signal models are 
important is that they often workextremelywell in practice, 
and enable us to realize important practical systems-e.g., 
prediction systems, recognition systems, identification sys- 
tems, etc., in a very efficient manner. 

These are several possible choices for what type of signal 
model i s  used for characterizing the properties of a given 
signal. Broadly one can dichotomize the types of signal 
models into the class of deterministic models, and the class 
of statistical models. Deterministic models generally exploit 
some known specific properties of the signal, e.g., that the 
signal is a sine wave, or a sum of exponentials, etc. In these 
cases, specification of the signal model is generally straight- 
forward;all that i s  required istodetermine(estimate)values 
of the parameters of the signal model (e.g., amplitude, fre- 
quency, phase of a sine wave, amplitudes and rates of expo- 
nentials, etc.). The second broad class of signal models i s  
the set of statistical models in which one tries to charac- 
terize only the statistical properties of the signal. Examples 
of such statistical models include Gaussian processes, Pois- 
son processes, Markov processes, and hidden Markov pro- 
cesses, among others. The underlying assumption of the 
statistical model i s  that the signal can be well characterized 
as a parametric random process, and that the parameters 
of the stochastic process can be determined (estimated) in 
a precise, well-defined manner. 

For the applications of interest, namely speech process- 
ing, both deterministic and stochastic signal models have 
had good success. In this paper we will concern ourselves 
strictlywith one typeof stochastic signal model, namelythe 
hidden Markov model (HMM). (These models are referred 
to as Markov sources or probabilistic functions of Markov 
chains in the communications literature.) We will first 
review the theory of Markov chains and then extend the 
ideas to the class of hidden Markov models using several 
simple examples. We will then focus our attention on the 
three fundamental problems' for HMM design, namely: the 

'The idea of characterizing the theoretical aspects of hidden 
Markov modeling in terms of solving three fundamental problems 
i s  due to Jack Ferguson of IDA (Institute for Defense Analysis) who 
introduced it in lectures and writing. 
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evaluation of the probability (or likelihood) of a sequence 
of observations given a specific HMM; the determination 
of a best sequence of model states; and the adjustment of 
model parameters so as to best account for the observed 
signal. We will show that once these three fundamental 
problems are solved, we can apply HMMs to selected prob- 
lems in speech recognition. 

Neither the theory of hidden Markov models nor its 
applications to speech recognition i s  new. The basic theory 
was published in a series of classic papers by Baum and his 
colleagues [I]-[5] in the late 1960s and early 1970s and was 
implemented for speech processing applications by Baker 
161 at CMU, and by Jelinek and his colleagues at IBM [7-[13] 
in the 1970s. However, widespread understanding and 
application of the theory of HMMs to speech processing 
has occurred only within the past several years. There are 
several reasons why this has been the case. First, the basic 
theory of hidden Markov models was published in math- 
ematical journals which were not generally read by engi- 
neers working on problems in speech processing. The sec- 
ond reason was that the original applications of the theory 
to speech processing did not provide sufficient tutorial 
material for most readers to understand the theory and to 
be able to apply it to their own research. As a result, several 
tutorial papers were written which provided a sufficient 
level of detail for a number of research labs to begin work 
using HMMs in individual speech processing applications 
[14]-[19]. This tutorial i s  intended to provide an overview 
of the basic theory of HMMs (as originated by Baum and 
his colleagues), provide practical details on methods of 
implementation of the theory, and describe a couple of 
selected applications of the theory to distinct problems in 
speech recognition. The paper combines results from a 
number of original sources and hopefully provides a single 
source for acquiring the background required to pursue 
further this fascinating area of research. 

The organization of this paper is as follows. In Section I1 
we review the theory of discrete Markov chains and show 
how the concept of hidden states, where the observation 
i s  a probabilistic function of the state, can be used effec- 
tively. We illustrate the theory with two simple examples, 
namely coin-tossing, and the classic balls-in-urns system. 
In Section I l l  we discuss the three fundamental problems 
of HMMs, and give several practical techniques for solving 
these problems. In Section IV we discuss the various types 
of HMMs that have been studied including ergodic as well 
as left-right models. In this section we also discuss the var- 
ious model features including the form of the observation 
density function, the state duration density, and the opti- 
mization criterion for choosing optimal HMM parameter 
values. In Section Vwe discuss the issues that arise in imple- 
menting HMMs including the topics of scaling, initial 
parameter estimates, model size, model form, missingdata, 
and multiple observation sequences. In Section VI we 
describean isolated word speech recognizer, implemented 
with HMM ideas, and show how it performs as compared 
to alternative implementations. In Section VI1 we extend 
the ideas presented in Section VI to the problem of recog- 
nizing a string of spoken words based on concatenating 
individual HMMsofeachword in thevocabulary. In Section 
V l l l  we briefly outline how the ideas of HMM have been 
applied to a largevocabulary speech recognizer, and in Sec- 

tion I X  we summarize the ideas discussed throughout the 
paper. 

11. DISCRETE MARKOV PROCESSES~ 

Consider a system which may be described at any time 
as being in one of a set of N distinct states, S1, SzI . . . , SN, 
as illustrated in Fig. 1 (where N = 5 for simplicity). At reg- 

Fig. 1. A Markov chain with 5 states (labeled S, to S,) with 
selected state transitions. 

ularlyspaced discrete times, the system undergoesachange 
of state (possibly back to the same state) according to a set 
of probabilities associated with the state. We denote the 
time instants associated with state changes as t = 1, 2, 
. . . , and we denote the actual state at time t as qr. A full 
probabilistic description of the above system would, in gen- 
eral, require specification of the current state (at time t), as 
well as all the predecessor states. For the special case of a 
discrete, first order, Markov chain, this probabilistic 
description is truncated to just the current and the pre- 
decessor state, i.e., 

99, = qq t -1  = SI, q t - 2  = S k r  . . . I  
= 9s: = S&: = SJ. (1 ) 

Furthermoreweonlyconsider those processes in which the 
right-hand side of (1) i s  independent of time, thereby lead- 
ing to the set of state transition probabilities a,, of the form 

(2) 

with the state transition coefficients having the properties 

a,, = 99, = S,(q,-, = S,], 1 5 i , j  5 N 

a,, 2 0 

C a,, = I 
N 

/ = 1  

(3a) 

(3b) 

since they obey standard stochastic constraints. 
The above stochastic process could be called an observ- 

able Markov model since the output of the process is the 
set of states at each instant of time, where each state cor- 
responds to a physical (observable) event. To set ideas, con- 
sider a simple 3-state Markov model of the weather. We 
assume that once a day (e.g., at noon), the weather i s  

'A good overview of discrete Markov processes is in [20, ch. 51. 
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observed as being one of the following: 

State 1: rain or (snow) 
State 2: cloudy 
State 3: sunny. 

We postulate that the weather on day t is characterized by 
a single one of the three states above, and that the matrix 
A of state transition probabilities i s  

0.4 0.3 0.3 

LO.1 0.1 0.81 

Given that the weather on day 1 ( t  = 1) is sunny (state 3), 
we can ask the question: What is the probability (according 
to the model) that the weather for the next 7 days will be 
"sun-sun-rain-rain-sun-cloudy-sun * * a " ?  Stated more for- 
mally, we define the observation sequence 0 as 0 = {S3 ,  
S3, S3, S1, S1, S3, Sz, S3} corresponding to t = 1, 2, . . . , 8, 
and we wish to determine the probability of 0, given the 
model. This probability can be expressed (and evaluated) 
as 

P(0IModel) = RS,, S3, S3, S1, S1, S3, Sz, S31Modell 

= SS31 . RS3lS3l SS3lS3l RSlIS31 

= 7r3 

= 1 . (0.8)(0.8)(0.1)(0.4)(0.3)(0.1)(0.2) 
= 1.536 X 

a33 * a33 . a31 * all . a13 . a32 . aZ3 

where we use the notation 

K, = 491 = S;], 1 5 i 5 N (4) 
to denote the initial state probabilities. 

Another interesting question we can ask (and answer 
using the model) is: Given that the model i s  in a known state, 
what i s  the probabilityit stays in that stateforexactlyddays? 
This probability can be evaluated as the probability of the 
observation sequence 

0 = {Si, Si, Si, . * * , S. s # S;}, 
1 2 3  d' dkl 

given the model, which i s  

P(OIMode1, ql = S;) = (aJd-'(l - a;;) = p,(d). (5) 

The quantityp;(d) i s  the (discrete) probability density func- 
tion of duration d i n  state i. This exponential duration den- 
sity is characteristic of the state duration in a Markovchain. 
Based on pi(d), we can readily calculate the expected num- 
ber of observations (duration) in a state, conditioned on 
starting in that state as 

m - 
d; = c dpi(d) 

d = l  
(6a) 

m 

(6b) 
1 

= c d(ajJd-'(1 - a;,) = -. 
d = l  1 - ai; 

Thus the expected number of consecutive days of sunny 
weather, according to the model, i s  140.2) = 5; for cloudy 
it is 2.5; for rain it is 1.67. 

A. Extension to Hidden Markov Models 

So far we have considered Markov models in which each 
state corresponded to an observable (physical) event. This 
model is too restrictive to be applicable to many problems 
of interest. In this section we extend the concept of Markov 
models to include the case where the observation i s  a prob- 
abilistic function of the state-i.e., the resulting model 
(which iscalled a hidden Markovmodel) isadoublyembed- 
ded stochastic process with an underlying stochastic pro- 
cess that i s  not observable (it is hidden), but can only be 
observed through another set of stochastic processes that 
produce the sequence of observations. To fix ideas, con- 
sider the following model of some simple coin tossing 
experiments. 

Coin Toss Models: Assume the following scenario. You 
are in a room with a barrier (e.g., a curtain) through which 
you cannot see what i s  happening. On the other side of the 
barrier i s  another person who is performing a coin (or mul- 
tiplecoin) tossing experiment. Theother person will not tell 
you anything about what he i s  doing exactly; he will only 
tell you the result of each coin flip. Thus a sequence of hid- 
den coin tossing experiments i s  performed, with the obser- 
vation sequence consisting of a series of heads and tails; 
e.g., a typical observation sequence would be 

0 = O1 O2 O3 . . . OT 

= x x333x 3 3  x . . .  x 
where X stands for heads and 3 stands for tails. 

Given the above scenario, the problem of interest i s  how 
do we build an HMM to explain (model) the observed 
sequence of heads and tails. The first problem one faces i s  
deciding what the states in the model correspond to, and 
then deciding how many states should be in the model. One 
possiblechoicewould betoassumethatonlyasingle biased 
coin was being tossed. In this case we could model the sit- 
uation with a 2-state model where each state corresponds 
to a side of the coin (i.e., heads or tails). This model i s  
depicted in Fig. 2(a).3 In this case the Markov model i s  
observable, and the only issue for complete specification 
of the model would be to decide on the best value for the 
bias (i.e., the probability of, say, heads). Interestingly, an 
equivalent HMM to that of Fig. 2(a) would be a degenerate 
I-state model, where the state corresponds to the single 
biased coin, and the unknown parameter i s  the bias of the 
coin. 

A second form of HMM for explaining the observed 
sequence of coin toss outcome is  given in Fig. 2(b). In this 
case there are 2 states in the model and each state corre- 
sponds to a different, biased, coin being tossed. Each state 
is characterized by a probability distribution of heads and 
tails, and transitions between states are characterized by a 
state transition matrix. The physical mechanism which 
accounts for how state transitions are selected could itself 
be a set of independent coin tosses, or some other prob- 
abilistic event. 

A third form of HMM for explaining the observed 
sequence of coin toss outcomes is  given in Fig. 2(c). This 
model corresponds to using 3 biased coins, and choosing 
from among the three, based on some probabilistic event. 

3The model of Fig. 2(a) is  a memoryless process and thus is a 
degenerate case of a Markov model. 
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P(H1 4 - P(HI 

HEADS TAILS 

0 33 

STATE 
t 2 3  

P(H1 PI Pp P3 
P(T)  I-P, i-Pp I-P3 

--- 

0 - H H T T H T H H T T H  ... 
S = l 1 2 2 4 2 1 1 2 2 i  ... 

0 = H H T T H T H H T T H  ... 
S = 2 1 I 2 2 2 1 2 2 1 2  ... 

O =  H H T T H T H H T T H  ... 
s = 3 1 2 3 3 1 4  2 3 1  3... 

Fig. 2. Three possible Markov models which can account 
for the resultsof hidden coin tossing experiments. (a) I-coin 
model. (b) 2-coins model. (c) 3-coins model. 

Given the choice among the three models shown in Fig. 
2 for explaining the observed sequence of heads and tails, 
a natural question would bewhich model best matches the 
actual observations. It should beclearthat the simple I-coin 
model of Fig. 2(a) has only 1 unknown parameter; the 2-coin 
model of Fig. 2(b) has4 un known parameters; and the 3-coin 
model of Fig. 2(c) has 9 unknown parameters. Thus, with 
the greater degrees of freedom, the larger HMMs would 
seem to inherently be more capable of modeling a series 
of coin tossing experiments than would equivalently smaller 
models. Although this is theoretically true, we will see later 
in this paper that practical considerations impose some 
strong limitations on the size of models that we can con- 
sider. Furthermore, it might just be the case that only a sin- 
glecoin i s  being tossed. Then using the 3-coin model of Fig. 
2(c) would be inappropriate, since the actual physical event 
would not correspond to the model being used-i.e., we 
would be using an underspecified system. 

The Urn and BallMode14:To extend the ideas of the HMM 
to a somewhat more complicated situation, consider the 
urn and ball system of Fig. 3. We assume that there are N 
(1arge)glassurnsin aroom. Withineach urntherearealarge 
number of colored balls. We assume there are M distinct 
colorsofthe balls. The physical processforobtainingobser- 
vations i s  as follows. A genie is in the room, and according 
to some random process, he (or she) chooses an initial urn. 
From this urn, a ball i s  chosen at random, and i t s  color i s  
recorded as theobservation.The ball i s  then replaced in the 
urn from which it was selected. A new urn is then selected 

4The urn and ball model was introduced by Jack Ferguson, and 
his colleagues, in lectures on HMM theory. 

os  {GREEN, GREEN, BLUE, RED, YELLOW, RED, .. . . . ... BLUE} 

Fig. 3. An N-state urn and ball model which illustrates the 
general case of a discrete symbol HMM. 

according to the random selection process associated with 
the current urn, and the ball selection process is repeated. 
This entire process generates afinite observation sequence 
of colors, which we would like to model as the observable 
output of an HMM. 

It should be obvious that the simplest HMM that cor- 
responds to the urn and ball process i s  one in which each 
state corresponds to a specific urn, and for which a (ball) 
color probability i s  defined for each state. The choice of 
urns i s  dictated by the state transition matrix of the HMM. 

5. Elements of an  HMM 

The above examples give us a pretty good idea of what 
an HMM is and how it can be applied to some simple sce- 
narios. We now formally define the elements of an HMM, 
and explain how the model generates observation 
sequences. 

An HMM i s  characterized by the following: 
1) N, the number of states in the model. Although the 

states are hidden, for many practical applications there i s  
often some physical significance attached to the states or 
to sets of states of the model. Hence, in the coin tossing 
experiments, each state corresponded to a distinct biased 
coin. In the urn and ball model, the states corresponded 
to the urns. Generally the states are interconnected in such 
a way that any state can be reached from any other state 
(e.g., an ergodic model); however, we will see later in this 
paper that other possible interconnections of states are 
often of interest. We denote the individual states as S = {Sl, 
S2, . . . , S N } ,  and the state at time t as g,. 

2) M, the number of distinct observation symbols per 
state, i.e., the discrete alphabet size. The observation sym- 
bols correspond to the physical output of the system being 
modeled. For the coin toss experiments the observation 
symbols were simply heads or tails; for the ball and urn 
model they were the colors of the balls selected from the 
urns. We denote the individual symbols as V = {vl, v,, 

3) The state transition probability distribution A = { a , }  

(7) 

For the special case where any state can reach any other 
state in a single step, we have a, > 0 for all i, j .  For other 
types of HMMs, we would have a,] = 0 for one or more (i, 
j )  pairs. 

* .  * , V M ) .  

where 

a,, = p[q,+l = S,lq, = S,], 1 5 i, j I N. 
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4) The observation symbol probability distribution in 
statej, B = {b,(k)}, where 

b,(k) = p[vk at t )q t  = S,], 1 I j 5 N 

I i k i M .  (8) 

5) The initial state distribution T = { T ~ }  where 

T ,  = p[ql = SI], 1 i i i N. (9) 

Given appropriate values of N, M, A, B, and ir, the HMM 
can be used as a generator to give an observation sequence 

0 = 0 1 O ~ ~ ~ ~ o J  (10) 

(where each observation 0, is  one of the symbols from V, 
and Tis the number of observations in the sequence) as 
follows: 

1) Choose an initial state q, = SI according to the initial 
state distribution T .  

2 )  Set t = 1 .  
3) Choose 0, = vk according to the symbol probability 

distribution in state SI, i.e., b,(k). 
4) Transit to a new state q,,, = S, according to the state 

transition probability distribution for state S,, i.e., a,. 
5) Set t = t + 1; return to step 3)if t < T; otherwise ter- 

minate the procedure. 

The above procedure can be used as both a generator of 
observations, and as a model for how a given observation 
sequence was generated by an appropriate HMM. 

It can be seen from the above discussion that a complete 
specification of an HMM requires specification of two 
model parameters (N and M), specification of observation 
symbols, and the specification of the three probability mea- 
sures A, B, and T.  For convenience, we use the compact 
notation 

A = (A, 6, T )  (11) 

to indicate the complete parameter set of the model. 

C. The Three Basic Problems for HMMs5 

Given the form of HMM of the previous section, there are 
three basic problems of interest that must be solved for the 
model to be useful in real-world applications. These prob- 
lems are the following: 

Problem 7: Given the observation sequence 0 = O1 O2 
. . * Or, and a model A = (A, 6, ir), how do 
we efficiently compute P(OIA), the proba- 
bilityof theobservation sequence,given the 
model? 

Problem 2: Given the observation sequence 0 = 0, O2 
. . . Or, and the model A, how do we choose 
a corresponding state sequence Q = q1 q2 
. . . qJwhich i s  optimal in some meaningful 
sense (i.e., best “explains” the observa- 
t ion s)? 

Problem 3: How do we adjust the model parameters A 
= (A, B, T )  to maximize P(OJA)? 

5The material in this section and in Section I l l  is based on the 
ideas presented by Jack Ferguson of IDA in lectures at Bell Lab- 
oratories. 

Problem 1 i s  the evaluation problem, namely given a 
model and asequenceof observations, how dowecompute 
the probability that the observed sequence was produced 
by the model. We can also view the problem as one of scor- 
ing how well a given model matches a given observation 
sequence. The latter viewpoint i s  extremely useful. For 
example, if we consider the case in which we are trying to 
choose among several competing models, the solution to 
Problem 1 allows us to choose the model which best 
matches the observations. 

Problem 2 is the one in which we attempt to uncover the 
hidden part of the model, i.e., to find the “correct” state 
sequence. It should be clear that for all but the case of 
degenerate models, there i s  no “correct” state sequence 
to be found. Hence for practical situations, we usually use 
an optimality criterion to solve this problem as best as pos- 
sible. Unfortunately, as we will see, there are several rea- 
sonable optimality criteria that can be imposed, and hence 
the choice of criterion is a strong function of the intended 
use for the uncovered state sequence. Typical uses might 
be to learn about the structure of the model, to find optimal 
state sequences for continuous speech recognition, or to 
get average statistics of individual states, etc. 

Problem 3 i s  the one in which we attempt to optimize the 
model parameters so as to best describe how a given obser- 
vation sequence comes about. The observation sequence 
used to adjust the model parameters i s  called a training 
sequence since it is used to “train” the HMM. The training 
problem is the crucial one for most applications of HMMs, 
since it allows us to optimally adapt model parameters to 
observed training data-i.e., to create best models for real 
phenomena. 

To fix ideas, consider the following simple isolated word 
speech recognizer. For each word of a Wword vocabulary, 
we want to design a separate N-state HMM. We represent 
the speech signal of a given word as a time sequence of 
coded spectral vectors. We assume that the coding i s  done 
using a spectral codebook with M unique spectral vectors; 
hence each observation i s  the index of the spectral vector 
closest (in some spectral sense) to the original speech sig- 
nal. Thus, for each vocabulary word, we have a training 
sequence consisting of a number of repetitions of 
sequencesofcodebook indicesoftheword (byoneor more 
talkers). The first task is to build individual word models. 
This task i s  done by using the solution to Problem 3 to opti- 
mally estimate model parameters for each word model. To 
develop an understanding of the physical meaning of the 
model states, we use the solution to Problem 2 to segment 
each of the word training sequences into states, and then 
study the properties of the spectral vectors that lead to the 
observations occurring in each state. The goal here would 
be to make refinements on the model (e.g., more states, 
different codebook size, etc.) so as to improve its capability 
of modeling the spoken word sequences. Finally, once the 
set of W HMMs has been designed and optimized and thor- 
oughly studied, recognition of an unknown word i s  per- 
formed using the solution to Problem 1 to score each word 
model based upon the given test observation sequence, 
and select the word whose modelscore is highe5t [k,? the 
highest I i kel i hood). 

In the next section we present formal mathematical solu- 
tionstoeachofthethreefundamental problemsfor HMMs. 
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We shall see that the three problems are linked together 
tightly under our probabilistic framework. 

I l l .  SOLUTIONS TO THE THREE BASIC PROBLEMS OF HMMs 

A. Solution to Problem 1 

We wish to calculate the probability of the observation 
sequence, 0 = O1 O2 . . . Or, given the model A, i.e., P ( 0 I X ) .  
The most straightforward way of doing this is  through 
enumerating every possible state sequence of length T(the 
number of observations). Consider one such fixed state 
sequence 

Q = q i q 2 . * . q r  (12) 

where q1 i s  the initial state. The probability of the obser- 
vation sequence 0 for the state sequence of (12) i s  

r 
P(OIQ, N = II P(OtJqt, h) (13a) 

i = 1  

where we have assumed statistical independence of obser- 
vations. Thus we get 

p(OlQ, N = bql(Oi) . bqz(OJ . . . bqJ(OT). (13b) 

The probability of such a state sequence Q can be written 
as 

P(QIA) = rq1aq1qzaq2q3 * . * aqr- lqr .  (14) 

The joint probability of 0 and Q, i.e., the probability that 
Oand Qoccur simultaneously, i s  simplythe product of the 
above two terms, i.e., 

P(0, QIN = P(OIQ, N P(Q, N. (1 5) 

The probability of 0 (given the model)is obtained by sum- 
ming this joint probabilityover all possible state sequences 
q giving 

P ( 0 I N  = P(OIQ, N P(QIN (1 6) 

The interpretation of the computation in the above equa- 
tion is the following. Initially (at time t = l) we are in state 
q1 with probability rq,, and generate the symbol O1 (in this 
state) with probability bqI(O1). The clock changes from time 
t to t + 1 (t = 2) and we make a transition to state q, from 
state q1 with probability aqIq2, and generate symbol O2 with 
probability bq2(O2). This process continues in this manner 
until we make the l i s t  transition (at time T )  from state q T - 1  
to state qT with probability aqr-lqr  and generate symbol Or 
with probability bql(Or). 

A little thought should convince the reader that the cal- 
culation of P(O(h), according to its direct definition (17) 
involves on the order of 2T. N'calculations, since at every 
t = 1, 2, . . . , T, there are N possible states which can be 
reached (i.e., there are Nr possible state sequences), and 
for each such state sequence about 2T calculations are 
required for each term in the sum of (17). (To be precise, 
we need (2T - l)Nr multiplications, and NT - 1 additions.) 
This calculation is computationally unfeasible, even for 
small values of N and T;  e.g., for N = 5 (states), T = 100 
(observations), there are on the order of 2 . 100 * 5" = 

computations! Clearly a more efficient procedure is 
required to solve Problem 1. Fortunately such a procedure 
exists and is  called the forward-backward procedure. 

The Forward-Backward Procedure [2], [316: Consider the 
forward variable at(;)  defined as 

at(;)  = P(O1 0 2  . . . oi, qt = S,IN (18) 

i.e., the probability of the partial observation sequence, 0, 
02. . . O,,(until timet)andstateS,at time t,given the model 
A. We can solve for a,(;) inductively, as follows: 

1) Initialization: 

CY,(;) = ~,b,(Ol),  1 5 i 5 N. (1 9) 

2) Induction: 

= C ai( i )al ,  b , ( ~ ( + ~ ) ,  I 5 t 5 T - I 

1 5 j 5 N. 

I 
(20) 

3) Termination: 
N 

~ ( 0 1 ~ )  = C a T ( i ) .  (21 ) 

Stepl) initializesthe forward probabilitiesasthejoint prob- 
ability of state SI and initial observation O1. The induction 
step, which i s  the heart of the forward calculation, i s  illus- 
trated in Fig. 4(a). This figure shows how state S, can be 

r = l  

(a) 

I I  I I I 
1 2 3  T 

OBSERVATION, t 

Fig. 4. (a) Illustration of the sequence of operations 
required for thecomputation of the forward variableol,+,(j). 
(b) Implementation of the computation of a,(;) in terms of 
a lattice of observations t ,  and states i .  

bStrictly speaking, we only need the forward part of the forward- 
backward procedure to solve Problem 1. We will introduce the 
backward part of the procedure in this section since it will be used 
to help solve Problem 3. 
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reached at time t + 1 from the N possible states, S I ,  1 I i 
I N, at timet. Since a,(;) is the probabilityof the joint event 
that 0, O2 . . . 0, are observed, and the state at time t is SI, 
the product a , ( i ) a ,  i s  then the probabilityof the joint event 
that O1 O2 . . . 0, are observed, and state S, i s  reached at 
time t + 1 via state S, at time t .  Summing this product over 
all the N possible states SI, 1 5 i I N at time t results in the 
probabilityof Slat time t + 1 with all theaccompanying pre- 
vious partial observations. Once this is done and SI i s  known, 
it i s  easy to see that a,+l( j )  i s  obtained by accounting for 
observation in state j ,  i.e., by multiplying the summed 
quantity bythe probabilityb,(O,+l).Thecomputation of(20) 
i s  performed for all states j ,  1 I j c N, for a given t ;  the 
computation i s  then iterated for t = 1,2, . . . , T - 1. Finally, 
step 3) gives the desired calculation of P(0IX) as the sum 
of the terminal forward variables a T ( i ) .  This i s  the case since, 
by definition, 

(22) 

and hence P(O(X) i s  just the sum of the aJ(i)'s. 
If we examine the computation involved in the calcula- 

tion of a,(j) ,  1 5 t I T, 1 5 j 5 N, we see that it requires 
on the order of N2T calculations, rather than 2TNr as 
required by the direct calculation. (Again, to be precise, we 
need N(N + 1)(T - 1) + N multiplications and N(N - 1)(T 
- 1) additions.) For N = 5,  T = 100, we need about 3000 
computations for the forward method, versus IO7* com- 
putations for the direct calculation, a savings of about 69 
orders of magnitude. 

The forward probability calculation is, in effect, based 
upon the lattice (or trellis) structure shown in Fig. 4(b). The 
key is that since there are only N states (nodes at each time 
slot in the lattice), all the possible state sequences wil l re- 
merge into these N nodes, no matter how long the obser- 
vation sequence. At time t = 1 (the first time slot in the lat- 
tice), we need to calculate values of el(;), 1 5 i I N. At times 
t = 2,3, . . . , T, we only need to calculate values of at( j ) ,  
1 5 I N, where each calculation involves only N previous 
valuesofa,-,(i) becauseeachofthe Ngrid pointsisreached 
from the same N grid points at the previous time slot. 

In asimilar manner,7wecan considera backwardvariable 
& ( i )  defined as 

PtG) = P(O,+, ot+2 . . . OTIq, = s,, h) (23) 

i.e., the probabilityof the partial observation sequence from 
t + 1 to the end, given state SI at time t and the model h. 
Again we can solve for &( i )  inductively, as follows: 

aJ(i)  = P(o1 0 2  . . ' or, qJ = s,Ih) 

1) Initialization: 

@ T ( i )  = 1, 1 5 i 5 N. (24) 

2) Induction: 

PAi) = a,b,(O,+l) & + d j ) ,  
N 

/ = 1  

t =T - I ,T -2 ; . . , 1 ,1  s i <  N. (25) 

The initialization step 1) arbitrarily defines or(;) to be 1 for 
all i. Step21,which i s  illustrated in Fig. 5, shows that in order 
to have been in state SI at time t ,  and to account for the 

'Again we remind the reader that the backward procedure will 
be used in the solution to Problem 3, and is not required for the 
solution of Problem 1. 

t 

P , c i )  

Fig. 5. Illustration of the sequence of operations required 
for the computation of the backward variable & ( i ) .  

observation sequence from time t + 1 on, you have to con- 
sider all possible states S, at time t + 1, accounting for the 
transition from SI  to S, (the a, term), as well as the obser- 
vation in state j (the b,(O,+,) term), and then account 
for the remaining partial observation sequence from state 
j (the /3,+,(j) term). We will see later how the backward, as 
well as the forward calculations are used extensively to help 
solve fundamental Problems 2 and 3 of HMMs. 

Again, the computation of f i t ( ; ) ,  1 I t I T, 1 5 i 5 N, 
requires on the order of N2Tcalculations, and can be com- 
puted in a lattice structure similar to that of Fig. 4(b). 

B. Solution to Problem 2 

Unlike Problem 1 forwhichanexact solutioncan begiven, 
there are several possible ways of solving Problem 2, namely 
finding the "optimal" state sequence associated with the 
given observation sequence. The difficulty lieswith thedef- 
inition of the optimal state sequence; i.e., there are several 
possible optimalitycriteria. For example, one possibleopti- 
mality criterion is to choose the states g, which are indi- 
viduallymost likely.This optimalitycriterion maximizes the 
expected number of correct individual states. To imple- 
ment this solution to Problem 2, we define the variable 

rAi) = P(q, = S,IO, A) (26) 

i.e., the probability of being in state SI  at time t ,  given the 
observation sequence 0, and the model A. Equation (26)can 
be expressed simply in terms of the forward-backward 
variables, i.e., 

(27) 
a ( i )  P ( i )  a,(;) PAi)  ?,(/) = = 

p(o'x) 5 a,(;) &(/) 
, = 1  

since a,(;) accounts for the partial observation sequence O1 
O2 * * 1 0, and state S, at t ,  while &( i )  accounts for the 
remainder of the observation sequence 0t+2 . . . Or, 
given state SI at t .  The normalization factor P(0)X) = Cy=, 
a,(;), PI(;) makes y t ( i )  a probability measure so that 

N c y,( i )  = 1. (28) 

Using r,(i), we can solve for the individually most likely 

g, = argmax [r,(i)], 1 I t 5 T. (29) 

,=1 

state g, at time t ,  as 

I c r c N  
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Although (29) maximizes the expected number of correct 
states (by choosing the most likely state for each t) ,  there 
could be some problems with the resulting state sequence. 
For example, when the HMM has state transitions which 
havezero probabilty(a,, = Ofor someiandj), the"optima1" 
state sequence may, in fact, not even be a valid state 
sequence. This i s  due to the fact that the solution of (29) 
simply determines the most likely state at every instant, 
without regard to the probability of occurrence of 
sequences of states. 

One possible solution to the above problem is to modify 
the optimality criterion. For example, one could solve for 
the state sequence that maximizes the expected number of 
correct pairs of states (q,, q t + l ) ,  or triples of states (q,, 
qt+ l ,  q,+*), etc.Although thesecriteria might be reasonable 
for some applications, the most widely used criterion i s  to 
find the single best state sequence (path), i.e., to maximize 
P ( Q l 0 ,  X) which is equivalent to maximizing P(Q, Olh). A 
formal technique for finding this single best state sequence 
exists, based on dynamic programming methods, and is  
called the Viterbi algorithm. 

Viterbi Algorithm [21], [22]: To find the single best state 
sequence, Q = {ql q, . . . q r } ,  for the given observation 
sequence 0 = (0, 0, 1 .  . Or}, we need to define the 
quantity 

= max Rql 92 . . . q, = i ,  0, O2 . . . O,(h] 
91.42. ' ' ' .9t- 1 

(30) 

i.e., 6,(i) i s  the best score (highest probability) along a single 
path, at time t, which accounts for the first t observations 
and ends in state SI.  By induction we have 

6 , + d j )  = [max 6,(i)a,,l . b,(Of+d. (31) 
L 

To actually retrieve the state sequence, we need to keep 
track of the argument which maximized (31), for each tand 
j. We do this via the array J . , ( j ) .  The complete procedure 
for finding the best state sequence can now be stated as 
follows: 

1) Initialization: 

6,( i )  = T,b,(Ol), 1 I i I N (32a) 

lJl(i) = 0. Wb)  

2) Recursion: 

6,Cj) = max [6t-l(i)a,lb,(0,), 2 I t I T 

1 I j I N 
1 s i s N  

(33a) 

= argmax [6t-l(i)a,l, 2 5 t I T  
1 r i s N  

1 I j N. (33b) 

3) Termination: (34a) 

P* = max [&(i)] 
1 s i s N  

(34 b) 

4) Path (state sequence) backtracking: 

q: = J.t+l(q:+l), t = T - 1, T - 2, * * , 1. (35) 

It should be noted that the Viterbi algorithm is similar 
(except for the backtracking step) in implementation to the 
forward calculation of (19)-(21). The major difference is  the 
maximization in (33a) over previous states which i s  used in 
place of the summing procedure in (20). It also should be 
clear that a lattice (or trellis) structure efficiently imple- 
ments the computation of the Viterbi procedure. 

C. Solution to Problem 3 [7]-[5] 

The third, and by far the most difficult, problem of HMMs 
i s  to determine a method to adjust the model parameters 
(A, B, T) to maximize the probability of the observation 
sequence given the model. There is no known way to ana- 
lytically solve for the model which maximizes the proba- 
bility of the observation sequence. In fact, given any finite 
observation sequence as training data, there is no optimal 
way of estimating the model parameters. We can, however, 
choose X = (A, B, T) such that P ( 0 J h )  i s  locally maximized 
using an iterative procedure such as the Baum-Welch 
method (or equivalently the EM (expectation-modification) 
method [23]), or using gradient techniques [14]. In this sec- 
tion we discuss one iterative procedure, based primarily on 
the classic work of Baum and his colleagues, for choosing 
model parameters. 

In order to describe the procedure for reestimation (iter- 
ative update and improvement) of HMM parameters, we 
first define [ , ( i , j ) ,  the probability of being in state SI at time 
t, and state S, at time t + 1, given the model and the obser- 
vation sequence, i.e. 

The sequence of events leading to the conditions required 
by (36) i s  illustrated in Fig. 6. It should be clear, from the 

0 

a,( i )  I 
- I  

I 
1-1 + I  

Fig. 6. Illustration of the sequence of operations required 
for the computation of the joint event that the system is in 
state S, at time t and state S, at time t + 1. 

definitions of the forward and backward variables, that we 
can write [,(i, j )  in the form 

4) a,b,(O,+l) P,+l(j)  
P(O( A) 

[Ai, j )  = 

where the numerator term i s  just P(qt = S,, qt+l  = SI, 011) 
and the division by P ( 0 I X )  gives the desired probability 
measure. 
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We have previously defined T i ( ; )  as the probability of 
being in state SI at time t, given the observation sequence 
and the model; hence we can relate T i ( ; )  to Ff(i, j )  by sum- 
ming over j ,  giving 

N 

rAi) = C ( A i ,  / I .  (38) 
/ = 1  

Ifwesumy,(i)over the time index t,weget aquantitywhich 
can be interpreted as the expected (over time) number of 
times that state SI is visited, or equivalently, the expected 
number of transitions made from state SI (if we exclude the 
time slot t = Tfrom the summation). Similarly, summation 
of Ft(i, j )  over t (from t = 1 to t = T - 1) can be interpreted 
as the expected number of transitions from state SI to state 
S,. That i s  

T - 1  

C y f ( i )  = expected number of transitions from S, 
f=l 

(394 

C ti(;, j )  = expected number of transitions from SI to S,. 

(39b) 

Using the above formulas (and the concept of counting 
event occurrences) we can give a method for reestimation 
of the parameters of an HMM. A set of reasonable reesti- 
mation formulas for T, A, and 6 are 

T-1 

f=l 

lihood estimate of the HMM. It should be pointed out that 
the forward-backward algorithm leads to local maxima 
only, and that in most problems of interest, the optimi- 
zation surface i s  very complex and has many local maxima. 

The reestimation formulas of (40a)-(40c) can be derived 
directly by maximizing (using standard constrained opti- 
mization techniques) Baum’s auxiliary function 

over h. It has been proven by Baum and his colleagues [6],  
[3] that maximization of Q(h, x) leads to increased likeli- 
hood, i.e. 

max [Q(X, x)] P(0Ix) 2 P(O(h). (42) 

Eventually the likelihood function converges to a critical 
point. 

Notes on the Reestimation Procedure: The reestimation 
formulas can readily be interpreted as an implementation 
of the EM algorithm of statistics [23] in which the E (expec- 
- tation) step is the calculation of the auxiliary function Q(X, 
A), and the M (modification) step i s  the maximization over 
A. Thus the Baum-Welch reestimation equations are essen- 
tially identical to the EM steps for this particular problem. 

An important aspect of the reestimation procedure is that 
the stochastic constraints of the HMM parameters, namely 

A 

- 

N 

C ? r , = I  
,=1 

(434 

(40a) - 
T, = expected frequency (number of times) in state SI at time (t = 1) = 

- 
4, = 

expected number of transitions from state SI to state S, 
expected number of transitions from state SI 

T-1 

- 
b,(k) = 

expected number of times in state j and observing symbol v k  
expected number of times in state j 

7 

T 
s.1. 0, = V k  (40~)  - - 

If we define the current model as A = (A, 6, T), and use 
that to compute the right-hand sides of (40a)-(40c), and we 

from the left-hand sides of (40a)-(40c), then it has been 

N 

C Z , / = I ,  l ~ i 5 N  (43b) 
/ = 1  

define the reestimated model as x = A, E ,  F), as determined 

proven by Baum and his colleagues [6], [3] that either 1) the M 

C b,(k) = I, I I j I N (43c) initial model Xdefinesacritical pointofthelikelihood func- k = l  
tion, in which casex = X; or 2) model h is more likely than 
model X in the sense that P(0Jx)  > P(OIX), i.e., we have 
found a new model x f rom which the observation sequence 
is more likely to have been produced. 

Based on the above procedure, if we iteratively use 1 in 
place of X and repeat the reestimation calculation, we then 
can improve the probability of 0 being observed from the 
model until some limiting point i s  reached. The final result 
of this reestimation procedure i s  called a maximum like- 

are automatically satisfied at each iteration. By looking at 
the parameter estimation problem as a constrained opti- 
mization of P(OJh) (subject to the constraints of (43)), the 
techniques of Lagrange multipliers can be used to find the 
valuesof x,,al, ,  and b,(k)which maximize P(we use the nota- 
tion P = P(0IX) as short-hand in this section). Based on set- 
ting up a standard Lagrange optimization using Lagrange 
multipliers, it can readily beshownthatpis maximizedwhen 
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the following conditions are met: 

ap 

* I  = N 
ap 

a k a  
k = l  Tk 

By appropriate manipulation of (44), the right-hand sides of 
each equation can be readily converted to be identical to 
the right-hand sides of each part of (40a)-(40c), thereby 
showing that the reestimation formulas are indeed exactly 
correct at critical points of P. In fact the form of (44) i s  essen- 
tially that of a reestimation formula in which the left-hand 
side i s  the reestimate and the right-hand side i s  computed 
using the current values of the variables. 

Finally, we note that since the entire problem can be set 
up as an optimization problem, standard gradient tech- 
niques can be used to solve for "optimal" values of the 
model parameters [14]. Such procedures have been tried 
and have been shown to yield solutionscomparabletothose 
of the standard reestimation procedures. 

IV. TYPES OF HMMs 

Until now, we have only considered the special case of 
ergodic or fully connected HMMs in which every state of 
the model could be reached (in a single step) from every 
other state of the model. (Strictly speaking, an ergodic 
model has the property that every state can be reached from 
every other state in a finite number of steps.) As shown in 
Fig. 7(a), for an N = 4 state model, this type of model has 
the property that every aij coefficient i s  positive. Hence for 
the example of Fig. 7a we have 

al l  a12 a13 a14 

a21 a22 a23 a24 

a31 a32 a33 a34 

a41 a42 a43 a4 

For some applications, in particularthose to bediscussed 
later in this paper, other types of HMMs have been found 
to account for observed properties of the signal being mod- 
eled better than the standard ergodic model. One such 
model i s  shown in Fig. 7(b). This model is called a left-right 
model or a Bakis model [Ill, [IO] because the underlying 
state sequence associated with the model has the property 
that as time increases the state index increases (or stays the 
same), i.e., the states proceed from left to right. Clearly the 
left-right typeof HMM has thedesirable propertythat it can 
readily model signals whose properties change overtime- 
e.g., speech. The fundamental property of all left-right 

(C) 

Fig. 7. Illustration of 3 distinct types of HMMs. (a) A4-state 
ergodic model. (b)ACstate left-right model. (c)A6-state par- 
allel path left-right model. 

HMMs is that the state transition coefficients have the prop- 
erty 

a,, = 0, j < i (45) 

i.e., no transitions are allowed to states whose indices are 
lower than the current state. Furthermore, the initial state 
probabilities have the property 

0, i f 1  

1, i=l 
*, = [ (46) 

since the state sequence must begin in state 1 (and end in 
state N).  Often, with left-right models, additional con- 
straints are placed on the state transition coefficients to 
make sure that large changes in state indices do not occur; 
hence a constraint of the form 

a , / = O ,  j > i + A  (47) 

i s  often used. In particular, for the example of Fig. 7(b), the 
value of A is 2, i.e., no jumps of more than 2 states are 
allowed. The form of the state transition matrix for the 
example of Fig. 7(b) is thus 

O O O a -  

It should beclearthat, for the last state in a left-right model, 
that the state transition coefficients are specified as 

a" = 1 (Ma) 

a N ,  = 0, i < N. ( a b )  
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Although we have dichotomized HMMs into ergodic and 
left-right models, there are many possible variations and 
combinations possible. By way of example, Fig. 7(c) shows 
a cross-coupled connection of two parallel left-right HMMs. 
Strictly speaking, this model i s  a left-right model (it obeys 
all the a,, constraints); however, it can be seen that it has 
certain flexibility not present in a strict left-right model (i.e., 
one without parallel paths). 

It should be clear that the imposition of the constraints 
of the left-right model, or those of the constrained jump 
model, essentially have no effect on the reestimation pro- 
cedure. This i s  the case because any HMM parameter set 
to zero initially, will remain at zero throughout the rees- 
timation procedure (see (44)). 

A. Continuous Observation Densities in HMMs 1241-[26] 

All of our discussion, to this point, has considered only 
the case when the observations were characterized as dis- 
crete symbols chosen from a finite alphabet, and therefore 
we could use a discrete probability density within each state 
of this model. The problem with this approach, at least for 
some applications, i s  that the observations are continuous 
signals (or vectors). Although it i s  possible to quantize such 
continuous signals via codebooks, etc., there might be seri- 
ous degradation associated with such quantization. Hence 
it would be advantageous to be able to use HMMs with con- 
tinuous observation densities. 

In order to use a continuous observation density, some 
restrictions have to be placed on the form of the model 
probability density function (pdf) to insure that the param- 
eters of the pdf can be reestimated in a consistent way. The 
most general representation of the pdf, for which a rees- 
timation procedure has been formulated [24]-[26], i s  a finite 
mixture of the form 

M 

b,(o) = C c/mxtO, p / m ,  U,,], 1 5 j 5 N (49) 

whereoisthevector being modeled,c,,,,isthemixturecoef- 
ficient for the mth mixture in state/ and 31. is any log-con- 
cave or elliptically symmetric density [24] (e.g., Gaussian), 
with mean vector p/, and covariance matrix U,,,, for the mth 
mixture component in state j .  Usually a Gaussian density 
is used for 31.. The mixture gains q,,, satisfy the stochastic 
constraint 

C =I, I S ~ S N  (5Oa) 

(50b) 

m = l  

M 

, , ,=I  cl,,, 

c,,,, 2 0, 1 I j 5 N ,  1 s: m 5 M 

so that the pdf i s  properly normalized, i.e., 

b,(x) dx = 1, 1 5 i 5 N. (51) 

The pdf of (49) can be used to approximate, arbitrarily 
closely, any finite, continuous density function. Hence it 
can be applied to a wide range of problems. 

It can be shown [24]-[26] that the reestimation formulas 
for the coefficients of the mixture density, i.e., c,,,,, P/k, and 
U,k, are of the form 

S_x, 

T 

- C rAi, k) 
(52) 

f = l  
‘/k = T M 

C rdj, k) 
f=1  k = l  

T 

(53) 

T 

- C ’ Y t ( / ,  k) . (0, - CL/k)(Ot - P,d’ 
T (54) 

U .  = t = l  
/ k  

rf(i ,  k) 
i = l  

where prime denotes vector transpose and where rt(j, k) 
i s  the probability of being in state i at time t with the kth 
mixture component accounting for O,, i.e., 

(The term r,(j, k) generalizes to rt(j) of (26) in the case of 
a simple mixture, or a discrete density.) The reestimation 
formula for a,  i s  identical to the one used for discrete obser- 
vation densities (i.e., (40b)). The interpretation of (52)-(54) 
is fairly straightforward. The reestimation formula for c,k is 
the ratio between theexpected number of times the system 
is in state j using the kth mixture component, and the 
expected number of times the system is in statej. Similarly, 
the reestimation formula for the mean vector p/k weights 
each numerator term of (52) by the observation, thereby 
giving the expected value of the portion of the observation 
vector accounted for by the kth mixture component. A sim- 
ilar interpretation can be given for the reestimation term 
for the covariance matrix u/k.  

B. Autoregressive HMMS [27J [28] 

Although the general formulation of continuous density 
HMMs is  applicable to a wide range of problems, there i s  
one other very interesting class of HMMs that is particularly 
applicable to speech processing. This i s  the class of auto- 
regressive HMMs [27, [28]. For this class, the observation 
vectors are drawn from an autoregression process. 

To be more specific, consider the observation vector 0 
with components (xo, xl, x2, . . . , XK-1). Since the basis prob- 
ability density function for the observation vector is Gauss- 
ian autoregressive (or order p), then the components of 0 
are related by 

P 

,=1 
Ok = - ar0k-l + ek (55) 

where ek, k = 0,1,2, . . . , K - 1 are Gaussian, independent, 
identically distributed random variables with zero mean and 
variance U*, and a, ,  i = 1,2, * . . , p, are the autoregression 
or predictor coefficients. It can be shown that for large K ,  
the density function for 0 i s  approximately 

where 

a’ = [I, al, a2, . . . , a,] 
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P - ‘  

n = O  

K - i - 1  

r,(i) = C anan+, ( 5 7 ~ )  

r(i) = C x,x,+, o I i 5 p. (57d) 

In the above equations it can be recognized that r(i) i s  the 
autocorrelation of the observation samples, and r,(i) i s  the 
autocorrelation of the autoregressive coefficients. 

The total (frame) prediction residual CY can be written as 

(ao = I), I 5 i 5 p 

n = O  

r K  i 

CY = E ,C (ei)’ = ~o~ J 
where U’ is the variance per sample of the error signal. Con- 
sider the normalized observation vector 

(59) 

where each sample x i  i s  divided by m, i.e., each sample 
is normalized bythe samplevariance.Then f(0)can bewrit- 
ten as 

In practice, the factor K (in front of the exponential of (60)) 
is replaced by an effective frame length K which represents 
theeffective length of each datavector. Thus if consecutive 
data vectors are overlapped by 3 to 1, then we would use 
/? = K/3 in (60), so that the contribution of each sample of 
signal to the overall density i s  counted exactly once. 

Theway in which we use Gaussian autoregressivedensity 
in HMMs is straightforward. We assume a mixture density 
of the form 

M 

b/(O) = ,,,?, c/mb/m(O) (61 ) 

where each b,,,,(O) i s  the density defined by (60) with auto- 
regression vector a,,,, (or equivalently by autocorrelation 
vector ra,,J, i.e., 

A reestimation formula for the sequence autocorrelation, 
r(i) of (57d), for the j th state, kth mixture, component has 
been derived, and is of the form 

T 

C rAi, k )  . rt 
(63a) 

- t = l  
r/k = T 

where yt(j, k )  i s  defined as the probability of being in state 
i at time t and using mixture component k, i.e., 

It can be seen that ?jk is a weighted sum (by probability of 
occurrence) of the normalized autocorrelations of the 
frames in the observation sequence. From i jk,  one can solve 
a set of normal equations to obtain the corresponding auto- 
regressive coefficient vector iijk, for the kth mixture of state 

1. The new autocorrection vectors of the autoregression 
coefficientscan then becalculated using (5713, therebyclos- 
ing the reestimation loop. 

C. Variants on HMM Structures-Null Transitions and Tied 
States 

Throughout this paper we have considered HMMs in 
which the observations were associated with states of the 
model. It i s  also possible to consider models in which the 
observations are associated with the arcs of the model. This 
type of HMM has been used extensively in the IBM con- 
tinuous speech recognizer [13]. It has been found useful, 
for this type of model, to allow transitions which produce 
nooutput-i.e., jumps irom one state to another which pro- 
duce no observation [13]. Such transitions are called null 
transitions and are designated by a dashed line with the 
symbol 4 used to denote the null output. 

Fig. 8 illustrates 3 examples (from speech processing 
tasks) where null arcs have been successfully utilized. The 

4 9 9  9 
h U 

9 

9 

Fig. 8. Examples of networks incorporating null transi- 
tions. (a) Left-right model. (b) Finite state network. (c) Gram- 
mar network. 

example of part (a) corresponds to an HMM (a left-right 
model) with a large number of states in which it i s  possible 
to omit transitions between any pair of states. Hence it is 
possible to generate observation sequences with as few as 
1 observation and still account for a path which begins in 
state 1 and ends in state N. 

The example of Fig. 8(b) is a finite state network (FSN) rep- 
resentation of aword in terms of linguistic unit models (i.e., 
the sound on each arc i s  itself an HMM). For this model the 
null transition gives a compact and efficient way of describ- 
ing alternate word pronunciations (i.e., symbol delections). 

Finally the FSN of Fig. 8(c) shows how the ability to insert 
a null transition into a grammar network allows a relatively 
simple network to generate arbitrarily long word (digit) 
sequences. In the example shown in Fig. 8(c), the null tran- 
sition allows the network to generate arbitrary sequences 
of digits of arbitrary length by returning to the initial state 
after each individual digit i s  produced. 

Another interesting variation in the HMM structure i s  the 
concept of parameter tieing [13]. Basically the idea i s  to set 
up an equivalence relation between HMM parameters in 
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different states. In this mannerthe number of independent 
parameters in the model is reduced and the parameter esti- 
mation becomes somewhat simpler. Parameter tieing is 
used in cases where the observation density (for example) 
i s  known to be the same in 2 or more states. Such cases 
occur often in characterizing speech sounds. The tech- 
nique is especially appropriate in the case where there is 
insufficient training data to estimate, reliably, a large num- 
ber of model parameters. For such cases it i s  appropriate 
to tie model parameters so as to reduce the number of 
parameters (i.e., size of the model) thereby making the 
parameter estimation problem somewhat simpler. We will 
discuss this method later in this paper. 

D. Inclusion of Explicit State Duration Density in HMM? 
fW, f301 

Perhaps the major weakness of conventional HMMs i s  
the modeling of state duration. Earlier we showed (5) that 
the inherent duration probability density p,(d) associated 
with state Sf,  with self transition coefficient a,,, was of the 
form 

pJd) = (a,r)d-l(l - all) 

= probability of d consecutive observations 
in state SI. 

(64) 

For most physical signals, this exponential state duration 
density i s  inappropriate. Instead we would prefer to explic- 
itly model duration density in some analytic form. Fig. 9 

(b) 

Fig. 9. Illustration of general interstate connections of (a) 
a normal HMM with exponential state duration density, and 
(b) a variable duration HMM with specified state densities 
and no self transitions from a state back to itself. 

illustrates,forapairof model statesS,and S,,thedifferences 
between HMMs without and with explicit duration density. 
In part (a) the states have exponential duration densities 
based on self-transition coefficients a,, and a,, respectively. 
In part (b), the self-transition coefficients are set tozero, and 
an explicit duration density i s  ~pec i f ied.~ For this case, a 

*In cases wherea Bakis type model i s  used, i.e., left-right models 
wherethenumberof states i s  proportional totheaverageduration, 
explicit inclusion of state duration density is neither necessary nor 
i s  it useful. 

'Again the ideas behind using explicit state duration densities 
are due to Jack Ferguson of IDA. Most of the material in this section 
i s  based on Ferguson's original work. 

transition i s  made only after the appropriate number of 
observations have occurred in the state (as specified by the 
duration density). 

Based on the simple model of Fig. 9(b), the sequence of 
events of the variable duration HMM i s  as follows: 

1) An initial state, q1 = SI, i s  chosen according to the ini- 
tial state distribution a , .  

2) A duration dl i s  chosen according to the state dura- 
tion density pql(dl). (For expedience and ease of 
implementation the duration density p,(d) i s  trun- 
cated at a maximum duration value D.) 

3) Observations 0, O2 * odl are chosen according to 
the joint observation density, bq,(Ol 0 2  . . . Od,). 
Generallywe assume independent of observations so 

4) The next state, q, = SI, is chosen according to the state 
transition probabilities, aqlqz, with the constraint that 
aqlq2 = 0, i.e., no transition back to the same state can 
occur. (Clearly this i s  a requirement since we assume 
that, in state q,, exactly dl observations occur.) 

A little thought should convince the reader that the 
variable duration HMM can be made equivalent to the stan- 
dard HMM by setting p,(d) to be the exponential density 
of (64). 

Using the above formulation, several changes must be 
made to the formulas of Section I l l  to allow calculation of 
P(0IX)and for reestimation of all model parameters. In par- 
ticular we assume that the first state begins at t = 1 and the 
last state ends at t = T, i.e., entire duration intervals are 
included with the observation sequence. We then define 
the forward variable at(;) as 

a,(;) = P(O1 O2 . . . 0,, SI ends at tlN. (65) 

We assume that a total of r states have been visited during 
the first t observations and we denote the states as ql, q,, 
. . .  , qr with durations associated with each state of dl, d2, 
. . .  , d,. Thus the constraints of (65) are 

qr = Si (664 

that bql(O1 0 2  Od,) = @ l q  bql(ot). 

r 

d, = t. 
5 = 1  

Equation (65) can then be written as 

at(;) = c c r q ,  . pql(dl) . p(o1 0 2  * * . Od,lql) 
q d  

' aqlq2pqz(d2) p(od, + 1 ' ' ' od, +d2192) ' . ' 

* aq,-lq,pq,(dr) p(odl+d2+. +d,_,+l * * otlqr) (67) 

wherethesum isoverall statesqand all possiblestatedura- 
tions d. By induction we can write a , ( / )  as 

N D  t 

a , ( / )  = at-d(l) a&(d) , = , ~ d + l  b,(Os) (68) 
r = l  d = l  

where D i s  the maximum duration within any state. To ini- 
tialize the computation of a,( j )  we use 

4;) = *,p , ( l )  * b,(01) (69a) 

aAi) = *,p,(2) II b,(O,) + a l ( j )  q,p,(I) b,(Oz) (69b) 
2 N 

s = l  / = 1  
I f ,  
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3 2 N  

s = l  d = l  / = 1  
I * ,  

4 i )  = *,p1(3) II MO,) + c a 3 - d ( j )  a,,p,(d) 

3 

. n b,(O,) (69~) 

etc., until aD(i) i s  computed; then (68) can be used for all 
t > D. It should be clear that the desired probability of 0 
given the model X can be written in terms of the a’s as 

s = 4 - d  

N 

P ( 0 I X )  = c C Y & ; )  (70) 
/=1  

as was previously used for ordinary HMMs. 
In ordertogive reestimation formulas for all thevariables 

of the variable duration HMM, we must define three more 
forward-backward variables, namely 

CY;(;)  = P(O1 O2 . 
&(i) = P(O,+l . . 

P:( i )  = P ( O t + l  

0,, SI begins at t + I l X )  (71) 

(72) 

(73) 

The relationships between CY, CY*, p, and p* are as follows: 

Or(S, ends at t ,  X) 

. * OrISI begins at t + 1, A). 

N 

a3j )  = C at(i)al/ (74) 
r=1 

D t 

at(;) = dzl a:-d(i) pi(d) bi(Os) (75) 
s = t - d + 1 

(76) 

D f + d  

d = l  s = i + 1  
p:(i) = 2 @t+d(i)  pi(d) bi(Os). (77) 

Based on the above relationships and definitions, the rees- 
timation formulas for the variable duration HMM are 

1 

T r  

(79) 

(80) 
r t + d  

c CY:(; )  piw Pt+d( i )  n b;(OJ 
. (81) s = t + l  

t + d  
pi(& = d = ’  

C a:(;) Pt+d( i )  ,z+l ~ I ( O S )  

The interpretation of the reestimation formulas is the fol- 
lowing. The formula for Ti is the probability that state i was 
the first state, given O.The formulaforaijisa/mostthesame 
as for the usual HMM except it uses the condition that the 
alpha terms in which a state ends at t, join with the beta 

d = l  t = l  

terms in which a new state begins at t + 1. The formula for 
b,(k) (assuming a discrete density) i s  the expected number 
of times that observation 0, = vk occurred in state i ,  nor- 
malized by the expected number of times that any obser- 
vation occurred in state i. Finally, the reestimation formula 
for p,(d) is  the ratio of the expected number of times state 
ioccurredwith duration d, to theexpected numberof times 
state i occurred with any duration. 

The importance of incorporating state duration densities 
i s  reflected in the observation that, for some problems, the 
quality of the modeling i s  significantly improved when 
explicit state duration densities are used. However, there 
are drawbacks to the use of the variable duration model 
discussed in this section. One is the greatly increased com- 
putational load associated with using variable durations. It 
can be seen from the definition and initialization condi- 
tions on the forward variable a,(/) ,  from (68)-(69), that about 
D times the storage and D2/2 times the computation i s  
required. For Don  the order of 25 (as i s  reasonable for many 
speech processing problems), computation i s  increased by 
a factor of 300. Another problem with the variable duration 
models is the large number of parameters (D), associated 
with each state, that must be estimated, in addition to the 
usual HMM parameters. Furthermore, for a fixed number 
of observations T, in the training set, there are, on average, 
fewer state transitions and much less data to estimate p,(d) 
than would be used in a standard HMM. Thus the reesti- 
mation problem is more difficult for variable duration 
HMMs than for the standard HMM. 

One proposal to alleviate some of these problems is to 
use a parametric state duration density instead of the non- 
parametric p,(d) used above [29], [30]. In particular, pro- 
posals include the Gaussian family with 

p m  = X ( d ,  PI, a:) 

- 

(82) 

with parameters p,  and of, or the Gamma family with 
,,;dv! - le-tt!d 

(83) rw pJd) = 

with parameters V ,  and 7, and with mean v , ~ ; ~  and variance 
~ ~ 7 ; ~ .  Reestimation formulas for 7, and v, have been derived 
and used with good results [19]. Another possibility, which 
has been used with good success, i s  to assume a uniform 
duration distribution (over an appropriate range of dura- 
tions) and use a path-constrained Viterbi decoding pro- 
cedure 1311. 

E. Optimization Criterion-ML, MMI, and MDI t321, t331 

The basic philosophy of HMMs is that a signal (or obser- 
vation sequence) can be well modeled if the parameters of 
an HMM are carefully and correctly chosen. The problem 
with this philosophy is that it is sometimes inaccurate- 
either because the signal does not obey the constraints of 
the HMM, or because it is too difficult to get reliable esti- 
mates of all HMM parameters. To alleviate this type of prob- 
lem, there has been proposed at least :WO alternatives to 
the standard maximum likelihood (ML) optimization pro- 
cedure for estimating HMM parameters. 

The first alternative [32] i s  based on the idea that several 
HMMs are to be designed and we wish to design them all 
at the same time in such a way so as to maximize the dis- 
crimination power of each model (i.e., each model’s ability 
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to distinguish between observation sequences generated 
by the correct model and those generated by alternative 
models). We denote the different HMMs as A,, v = 1,  2, 
. . . , V.The standard MLdesign criterion is to use a separate 
training sequence of observations 0’ to derive model 
parameters for each model A,. Thus the standard ML opti- 
mization yields 

(84) 

The proposed alternative design criterion [31] is the max- 
imum mutual information (MMI) criterion in which the 
average mutual information l between the observation 
sequence 0’ and the complete set of models X = (A1, A,, 
. . .  , h,) i s  maximized. One possible way of implementing 
this” is 

I: = max log P(O’IX,) - log i P(O”~Xw)] (85) 

i.e., choose X so as to separate the correct model A, from 
all other models on the training sequence 0’. By summing 
(85) over all training sequences, one would hope to attain 
the most separated set of models possible. Thus a possible 
implementation would be 

A [  w = 1  

/ v  r V . 
I* = max C log P(o‘~x,) - log C P(O’IX,) 

A I w = 1  

There are various theoretical reasons why analytical (or 
reestimation type) solutions to (86) cannot be realized. Thus 
the only known way of actually solving (86) i s  via general 
optimization procedures likethe steepest descent methods 

The second alternative philosophy i s  to assume that the 
signal to be modeled was not necessarily generated by a 
Markovsource, but does obey certain constraints (e.g., pos- 
itive definite correlation function) [33]. The goal of the 
design procedure i s  therefore to choose HMM parameters 
which minimize the discrimination information (DI) or the 
cross entropy between the set of valid (i.e., which satisfy 
the measurements) signal probability densities (call this set 
Q), and the set of HMM probability densities (call this set 
PA), where the DI between Q and Scan generally be written 
in the form 

D(QIIPJ = j q ( y )  In (q (y ) /p (y ) )  d y  (87) 

where q and p are the probability density functions cor- 
responding to Q and PA. Techniques for minimizing (87) 
(thereby giving an MDI solution) for the optimum values 
of X = (A, B, T )  are highly nontrivial; however, they use a 
generalized Baum algorithm as the core of each iteration, 
and thusareefficientlytailored to hidden Markov modeling 
W I .  

It has been shown that the ML, MMI, and MDI approaches 
can a// be uniformly formulated as MDI approaches.” The 
three approaches differ in either the probability density 
attributed to the source being modeled, or in the model 

[321. 

”In (85) and (86) we assume that all words are equiprobable, i.e., 

”Y. Ephraim and L. Rabiner, “On the Relations Between Mod- 
eling Approaches for Speech Recognition,” to appear in IEEE TRANS- 
ACTIONS ON INFORMATION THEORY. 

p(w) = 1/v. 

effectively being used. None of the approaches, however, 
assumes that the source has the probability distribution of 
the model. 

F. Comparison of HMMs [34] 

An interesting question associated with HMMs is  the fol- 
lowing: Given two HMMs, X1 and X2, what is a reasonable 
measure of the similarity of the two models? A key point 
here i s  the similarity criterion. Byway of example, consider 
the case of two models 

X i  = (Ai, Bit 9 1 )  1 2  = (A2t B2, ~ 2 )  

with 

Al = 1 - P  P - q  g1 = [ q  1 - q  4 - q l  
7r, = [1/2 1/21 

and 

A, = [‘ ] 7r2 = [1/2 1/21. 

For X1 to be equivalent to A,, in the sense of having the same 
statistical properties for the observation symbols, i.e., E[O, 
= vkJX1] = €10, = vklh2], for all vk, we require 

1 - r  1 - s  

] B2 = [” I - r  r I - s  s 

pq + (1 - p)( l  - q) = rs + (1 - r ) ( l  - s) 

or, by solving for s, we get 

P + q - 2P9 s =  
1 - 2r 

By choosing (arbitrarily) p = 0.6, q = 0.7, r = 0.2, we get s 
= 13/30 = 0.433. Thus, even when the two models, A, and 
X2, look ostensibly very different (i.e., Al is very different 
from A, and B1 is very different from B2),  statistical equiv- 
alence of the models can occur. 

We can generalize the concept of model distance (dis- 
similarity) by defining a distance measure D(X1, A,), between 
two Markov models, A, and X2, as 

where 0‘2’ = O1 O2 O3 . . . OTis a sequence of observations 
generated by model X2 [34]. Basically (88) is a measure of 
how well model hl matches observations generated by 
model hZ, relative to how well model X2 matches obser- 
vations generated by itself. Several interpretations of (88) 
exist in terms of cross entropy, or divergence, or discrim- 
ination information [34]. 

One of the problems with the distance measure of (88) 
isthat it is nonsymmetric. Hence a natural expression of this 
measure i s  the symmetrized version, namely 

v. IMPLEMENTATION ISSUES FOR HMMS 

The discussion in the previous two sections has primarily 
dealtwith the theoryof HMMs and several variations on the 
form of the model. In this section wedeal with several prac- 
tical implementation issues including scaling, multiple 
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observation sequences, initial parameter estimates, miss- 
ing data, and choice of model size and type. For some of 
these implementation issues we can prescribe exact ana- 
lytical solutions; for other issues we can only provide some 
seat-of-the-pants experience gained from working with 
HMMs over the last several years. 

A. Scaling [I41 

In order to understand why scaling i s  required for imple- 
menting the reestimation procedure of HMMs, consider 
thedefinition ofat(i)of(18). Itcan beseen that a,(i)consists 
of the sum of a large number of terms, each of the form 

with 9t = SI.  Since each a and b term is less than 1 (generally 
significantly less than I), it can be seen that as t starts to get 
big (e.g., 10 or more), each term of at(;)  starts to head expo- 
nentially to zero. For sufficiently large t (e.g., 100 or more) 
the dynamic range of the a,(;) computation will exceed the 
precision range of essentially any machine (even in double 
precision). Hence the only reasonable way of performing 
the computation is by incorporating a scaling procedure. 

The basic scaling procedure which is used i s  to multiply 
a,(;) by a scaling coefficient that is independent of i (i.e., it 
depends only on t), with the goal of keeping the scaled a,(;) 
within the dynamic range of the computer for 1 5 t 5 T. 
A similar scaling is done to the &( i )  coefficients (since these 
also tend to zero exponentially fast) and then, at the end 
of the computation, the scaling coefficients are canceled 
out exactly. 

To understand this scaling procedure better, consider 
the reestimation formula forthe statetransition coefficients 
a,/. If we write the reestimation formula(41) directly in terms 
of the forward and backward variables we get 

Consider the computation of at(;). For each t, we first com- 
pute a&) according to the induction formula (20), and then 
we multiply it by a scaling coefficient ctr where 

Thus, for a fixed t, we first compute 
N 

at(;)  = G t - d j )  a,b,(O,). (92a) 
/ = 1  

Then the scaled coefficient set &,(i) i s  computed as 
N 

C t i- l( j)  a,b,(O,) 

C C t i t - l ( j )  a,b,(O,) 

(92b) 
1'1 

& A i )  = N N 

, = 1 / = 1  

By induction we can write &f-l(j)  as 

(934 

Thus we can write &( i )  as 

N I t - 1  , 

i.e., each at(;)  i s  effectively scaled by the sum over all states 
of C Y t ( ; ) .  

Next we compute the &( i )  terms from the backward 
recursion. The only difference here i s  that we use the same 
scale factors for each time t for the betas as was used for 
the alphas. Hence the scaled p's are of the form 

BA;) = CtOAi) .  (94) 

Since each scale factor effectively restores the magnitude 
of the OL terms to 1, and since the magnitudes of the a and 
0 terms are comparable, using the same scaling factors on 
the 0's as was used on the a's i s  an effective way of keeping 
the computation within reasonable bounds. Furthermore, 
in terms of the scaled variables we see that the reestimation 
equation (90) becomes 

but each &,( i )  can be written as 

(95) 

(96) 

and each & + , ( j )  can be written as 

Thus (95) can be written as 

Finally the term C,D,+, can be seen to be of the form 

t T T 

independent oft. Hence the terms CtDt+l cancel out of both 
the numerator and denominator of (98) and the exact rees- 
timation equation i s  therefore realized. 

It should be obvious that the above scaling procedure 
applies equally well to reestimation of the 7r or B coeffi- 
cients. It should also beobvious that the scaling procedure 
of (92) need not be applied at every time instant t, but can 
be performed whenever desired, or necessary (e.g., to pre- 
vent underflow). If scaling i s  not performed at some instant 
t, the scaling coefficients c, are set to 1 at that time and all 
the conditions discussed above are then met. 

The only real change to the HMM procedure because of 
scaling i s  the procedure for computing P(O(X) .  We cannot 
merely sum up the &T(i) terms since these are scaled already. 
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However, we can use the property that 
T N  N 

n cf ad;)  = CT ( Y T ( i )  = 1. 
f=l ,=1 ,=1 

Thus we have 
T n c, * P(O(h) = 1 

t = 1  

or 

1 
P(Olh) = 

n Cf 
f = l  

or 

100) 

101) 

T 

log [P(O(h)l = - c log Cf. (103) 

Thus the log of Pcan becomputed, but not Psince itwould 
be out of the dynamic range of the machine anyway. 

Finally we note that when using the Viterbi algorithm to 
give the maximum likelihood state sequence, no scaling i s  
required if we use logarithms in the following way. (Refer 
back to (32)-(34).) We define 

i=l 

and initially set 

with the recursion step 

and termination step 

log P* = max [$T(i)]. (105~) 
~ L I s N  

Again we arrive at log P* rather than P*, but with signifi- 
cantly less computation and with no numerical problems. 
(The reader should note that the terms log a,  of (105b) can 
be precomputed and therefore do not cost anything in the 
computation. Furthermore, the terms log [b,(O,)] can be 
precomputed when a finite observation symbol analysis 
(e.g., a codebook of observation sequences) i s  used. 

B. Multiple Observation Sequences [I41 

In Section Wwediscussed aformof HMMcalled theleft- 
right or Bakis model in which the state proceeds from state 
1 at t = 1 to state N at t = Tin a sequential manner (recall 
the model of Fig. 7(b)). We have already discussed how a 
left-right model imposes constraints on the state transition 
matrix, and the initial state probabilities (45)-(48). However, 
the major problem with left-right models i s  that one cannot 
use a single observation sequence to train the model (i.e., 
for reestimation of model parameters). This i s  because the 
transient nature of the states within the model only allow 
a small number of observations for any state (until a tran- 
sition is made to a successor state). Hence, in order to have 
sufficient data to make reliable estimates of all model 
parameters, one has to use multipleobservation sequences. 

The modification of the reestimation procedure i s  
straightforward and goes as follows. We denote the set of 
K observation sequences as 

0 = [of') I 1  012) . . . , ofk) ]  (1 06) 

where O'k' = [OF' 0ik) . . . O$!l i s  the kth observation 
sequence. We assume each observation sequence is inde- 
pendent of every other observation sequence, and our goal 
is to adjust the parameters of the model X to maximize 

K 

P(O(X) = n P(O'k'IX) (1 07) 
k = l  

K 

k = l  
= n Pk. 

Since the reestimation formulas are based on frequencies 
of occurrence of various events, the reestimation formulas 
for multiple observation sequences are modified by adding 
together the individual frequencies of occurrence for each 
sequence. Thus the modified reestimation formulas for 
a, and q(P) are 
- 

Y A T k - 1  

and 

and x, i s  not reestimated since xl = 1, r, = 0, i # 1. 
The proper scaling of (109)-(110) i s  now straightforward 

since each observation sequence has its own scaling factor. 
The key idea i s  to remove the scaling factor from each term 
before summing. This can be accomplished by writing the 
reestimation equations in terms of the scaled variables, i.e., 

K A T k - 1  

In this manner, for each sequence Ofk', the same scale fac- 
tors will appear in each term of the sum over t as appears 
in the Pk term, and hencewill cancel exactly. Thus using the 
scaled values of the alphas and betas results in an unscaled 
a,. A similar result is obtained for the E,(&') term. 

C. Initial Estimates of HMM Parameters 

- 

In theory, the reestimation equations should give values 
of the HMM parameters which correspond to a local max- 
imumofthelike1ihoodfunction.A keyquestion istherefore 
how do we choose initial estimates of the HMM parameters 
so that the local maximum is  the global maximum of the 
likelihood function. 

Basically there is no simple or straightforward answer to 
the above question. Instead, experience has shown that 
either random (subject to the stochastic and the nonzero 
value constraints) or uniform initial estimates of the r a n d  
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A parameters i s  adequate for giving useful reestimates of 
these parameters in almost all cases. However, for the B 
parameters, experience has shown that good initial esti- 
mates are helpful in the discrete symbol case, and are 
essential (when dealing with multiple mixtures) in the con- 
tinuous distribution case [35]. Such initial estimates can be 
obtained in a number of ways, including manual segmen- 
tation of the observation sequence($ into states with aver- 
aging of observations within states, maximum likelihood 
segmentation of observations with averaging, and seg- 
mental k-means segmentation with clustering, etc. We dis- 
cuss such segmentation techniques later in this paper. 

D. Effects o f  Insufficient Training Data [36] 

Another problem associated with training HMM param- 
eters via reestimation methods i s  that the observation 
sequence used for training is, of necessity, finite. Thus there 
i s  often an insufficient number of occurrences of different 
model events (e.g., symbol occurrences within states) to 
give good estimates of the model parameters. One solution 
to this problem is to increase the size of the training obser- 
vation set. Often this i s  impractical. A second possible solu- 
tion i s  to reduce the size of the model (e.g., number of states, 
number of symbols per state, etc). Although this is always 
possible, often there are physical reasons why a given model 
i s  used and therefore the model size cannot be changed. 
A third possible solution i s  to interpolate one set of param- 
eter estimates with another set of parameter estimates from 
a model for which an adequate amount of training data 
exists [36]. The idea is  to simultaneously design both the 
desired model as well as a smaller model for which the 
amount of training data i s  adequate to give good parameter 
estimates, and then to interpolate the parameter estimates 
from the two models. The way in which the smaller model 
i s  chosen is  by tieing one or more sets of parameters of the 
initial model to create the smaller model. Thus if we have 
estimates for the parameters for the model h = (A, B, K), as 
well as for the reduced size model A’ = (A’, B’, K’), then the 
interpolated model, i = (A, B, if), is obtained as 

i = E X  + (1 - €)A’ (112) 

where E represents the weighting of the parameters of the 
full model, and (1 - E )  represents the weighting of the 
parameters of the reduced model. A key issue is the deter- 
mination of the optimal value of E, which i s  clearly a func- 
tion of the amount of training data. (As the amount of train- 
ing data gets large, we expect E to tend to 1.0; similarly for 
small amounts of training data we expect E to tend to 0.0.) 
The solution to the determination of an optimal value for 
E was provided by Jelinek and Mercer [36] who showed how 
the optimal value for E could be estimated using the for- 
ward-backward algorithm by interpreting (112) as an 
expanded HMM of the type shown in Fig. 10. For this 
expanded model the parametere is the probabilityof a state 
transition from the (neutral) state 5 to the model A; similarly 
(1 - E )  i s  the probability of a state transition from S to the 
model A’. Between each of the models, X and A’, and S ,  there 
i s  a null transition. Using the model of Fig. 9, the value of 
e can be estimated from the training data in the standard 
manner. A key point i s  to segment the training data T into 
two disjoint sets, i.e., T = Tl U T2. Training set Tl i s  first 
used to train models X and A‘ (i.e., to give estimates of (A, 

E n 

W 
Fig. 10. Example of how the process of deleted interpo- 
lation can be represented using a state diagram. 

B, K) and (A‘, B’, K’)). Training set T2 i s  then used to give an 
estimate of E, assuming the models X and X’ are fixed. A 
modified version of this training procedure, called the 
method of deleted interpolation [36], iterates the above pro- 
cedure through multiple partitions of the training set. For 
example one might consider a partition of the training set 
such that T, i s  90 percent of T and T2 i s  the remaining 10 
percent of T. There are a large number of ways in which 
such a partitioning can be accomplished but one partic- 
ularly simple one is  to cycle T2 through the data, i.e., the 
first partition uses the last 10 percent of the data as T2, the 
second partition uses the next-to-last 10 percent of thedata 
as T2, etc. 

The technique of deleted interpolation has been suc- 
cessfully applied to a number of problems in speech rec- 
ognition including the estimation of trigram word proba- 
bilities for language models [13], and the estimation of HMM 
output probabilities for trigram phone models [37, [38]. 

Another way of handling the effects of insufficient train- 
ing data i s  to add extra constraints to the model parameters 
to insure that no model parameter estimate falls below a 
specified level. Thus, for example, we might specify the 
constraint, for a discrete symbol model, that 

b,(k)  2 6 (113a) 

or, for a continuous distribution model, that 

U,,&, r)  2 6. (113b) 

The constraints can be applied as a postprocessor to the 
reestimation equations such that if a constraint i s  violated, 
the relevant parameter i s  manually corrected, and all 
remaining parameters are rescaled so that the densities 
obey the required stochastic constraints. Such post-pro- 
cessor techniques have been applied to several problems 
in speech processing with good success [39]. It can be seen 
from (112) that this procedure is essentially equivalent to 
a simple form of deleted interpolation in which the model 
X’ i s  a uniform distribution model, and the interpolation 
value E i s  chosen as the fixed constant (1 - 6). 

E. Choice o f  Model 

The remaining issue in implementing HMMs is  thechoice 
of type of model (ergodic or left-right or some other form), 
choice of model size (number of states), and choice of 
observation symbols (discrete or continuous, single or 
multi-mixture, choice of observation parameters). Unfor- 
tunately, there is no simple, theoretically correct, way of 
making such choices. Thesechoices must be made depend- 
ing on the signal being modeled. With these comments we 
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end our discussion of the theoretical aspects of hidden 
Markov models, and proceed to a discussion of how such 
models have been applied to selected problems in speech 
recognition. 

VI. IMPLEMENTATION OF SPEECH RECOGNIZERS USING HMMs 

The purposeof this,and thefollowingsections, isto illus- 
trate how the ideas of HMMs, as discussed in the first 5 sec- 
tions of this paper, have been applied to selected problems 
in speech recognition. As such, we will not strive to be as 
thorough or as complete in our descriptions as to what was 
done as we were in describing the theory of HMMs. The 
interested reader should read the material in [6], [IO], [12], 
[13], [39]-[46] for more complete descriptions of individual 
systems. Our main goal here is to show how specific aspects 
of HMM theoryget applied, not to make the reader an expert 
in speech recognition technology. 

A. Overall Recognition System 

Fig. 11 shows a block diagram of a pattern recognition 
approach to continuous speech recognition system. The 
key signal processing steps include the following: 

I )  Feature Analysis: A spectral and/or temporal analysis 
of the speech signal i s  performed to give observation vec- 
tors which can be used to train the HMMs which charac- 
terize various speech sounds. A detailed discussion of one 
type of feature analysis is given later in this section. 

2) Unit Matching System: First a choice of speech rec- 
ognition unit must be made. Possibilities include linguis- 
tically based sub-word units such as phones (or phone-like 
units), diphones, demisyllables, and syllables [38], as well 
as derivative units such as fenemes, fenones, and acoustic 
units [13]. Other possibilities includewholeword units, and 
even units which correspond to a group of 2 or morewords 
(e.g., and an, in the, of a, etc). Generally, the less complex 
the unit (e.g., phones), the fewer of them there are in the 
language, and the more complicated (variable) their struc- 
ture in continuous speech. For largevocabulary speech rec- 
ognition (involving1000or morewords), theuseof sub-word 
speech units i s  almost mandatory as it would be quite dif- 
ficultto record an adequatetraining setfordesigning HMMs 
for units of the size of words or larger. However, for spe- 
cialized applications (e.g., small vocabulary, constrained 
task), it i s  both reasonableand practical toconsidertheword 
as a basic speech unit. We will consider such systems exclu- 
sively in this and the following section. Independent of the 
unit chosen for recognition, an inventory of such units must 
be obtained via training. Typically each such unit is char- 
acterized by some type of HMM whose parameters are esti- 
mated from a training set of speech data. The unit matching 
system provides the likelihoods of a match of all sequences 

of speech recognition units to the unknown input speech. 
Techniques for providing such match scores, and in par- 
ticular determining the best match score (subject to lexical 
and syntactic constraints of the system) include the stack 
decoding procedure [A, various forms of frame synchron- 
ous path decoding [37], and a lexical access scoring pro- 
cedure [46]. 

3) Lexical Decoding: This process places constraints on 
the unit matching system so that the paths investigated are 
those corresponding to sequences of speech units which 
are in a word dictionary (a lexicon). This procedure implies 
that the speech recognition word vocabulary must be spec- 
ified in termsof the basic units chosen for recognition. Such 
a specification can be deterministic (e.g., one or more finite 
state networks for each word in thevocabu1ary)or statistical 
(e.g., probabilitiesattached tothearcs inthefinitestate rep- 
resentation of words). In the case where the chosen units 
arewords(orword combinations), the lexical decoding step 
i s  essentiallyeliminated and the structureof the recognizer 
is greatly simplified. 

4) Syntactic Analysis: This process, much like lexical 
decoding, places further constraints on the unit matching 
system so that the paths investigated are thosecorrespond- 
ing to speech units which comprise words (lexical decod- 
ing) and for which the words are in a proper sequence as 
specified by a word grammar. Such a word grammar can 
again be represented by adeterministic finitestate network 
(in which all word combinations which are accepted by the 
grammar are enumerated), or by a statistical grammar (e.g., 
a trigram word model in which probabilities of sequences 
of 3 words in a specified order are given). For some com- 
mand and control tasks, onlya single word from afinite set 
of equiprobable i s  required to be recognized and therefore 
the grammar is either trivial or unnecessary. Such tasks are 
often referred to as isolated word speech recognition tasks. 
For other applications (e.g., digit sequences) very simple 
grammars are often adequate (e.g., any digit can be spoken 
and followed by any other digit). Finally there are tasks for 
which the grammar i s  a dominant factor and, although it 
adds a great deal of constraint to the recognition process, 
it greatly improves recognition performance by the result- 
ing restrictions on the sequence of speech units which are 
valid recognition candidates. 

5) Semantic Analysis: This process, again like the steps 
of syntactic analysis and lexical decoding, adds further con- 
straints to the set of recognition search paths. One way in 
which semantic constraints are utilized i s  via a dynamic 
model of the state of the recognizer. Depending on the 
recognizer state certain syntactically correct input strings 
are eliminated from consideration. This again serves to 
make the recognition task easier and leads to higher per- 
formance of the system. 

Fig. 11. Block diagram of a continuous speech recognizer. 

RABINER: HIDDEN MARKOV MODELS 275 



There is one additional factor that has a significant effort 
on the implementation of a speech recognizer and that is 
the problem of separating background silence from the 
input speech. There are at least three reasonable ways of 
accomplis hi ng this task: 

SPEECH 
SIGNAL 

S 

Explicitly detecting the presence of speech via tech- 
niques which discriminate background from speech 
on the basis of signal energy and signal durations. 
Such methods have been used for template-based 
approaches because of their inherent simplicity and 
their success in low to moderate noise backgrounds 
[MI. 
Build a model of the background silence, e.g., a sta- 
tistical model, and represent the incoming signal as 
an arbitrary sequence of speech and background, i.e., 

signal = (silence) - speech - (silence) 

where the silence part of the signal i s  optional in that 
it may not be present before or after the speech 1491. 
Extend the speech unit models so that background 
silence i s  included (optionally) within the first andlor 
last state of the model, and therefore silence inher- 
ently gets included within all speech unit models. 

INDEX OF 
RECOGNIZED 
WORD 

Lpc OBSERVATION 
FEATURE SEOUENCE 
ANALYSIS, 0 
(VECTOR 

OUANTI- COMPUTATION ZATlONl  

All three of these techniques have been utilized in speech 
recognition systems. 

Instead of discussing the general continuous speech rec- 
ognition system further, we now present specialized appli- 
cations to illustrate how HMM technology can be utilized. 
First we present a system where the basic speech unit is the 
word, where the task is to recognize a single spoken word, 
and where there i s  no task syntax or semantics to constrain 
the choice of words. This task i s  generally referred to as 
isolated word recognition. Next we discuss a slightly more 
complicated task in which the basic speech unit i s  still the 
word, but where the task is to recognize a continuous utter- 
ance consisting of words from the vocabularly. Included in 
such a task i s  the problem of recognizing a spoken string 
of digits. We again consider the case where there is no task 
syntax or semantics to constrain the choice of words, i.e., 
anydigitcan followanyother digit. Recognition tasksofthis 
type have been referred to as connected word recognizers 
because the continuous speech is recognized as a conca- 
tenated sequence of word models. This i s  technically a mis- 

9 

nomer because it i s  truly a continuous speech recognition 
problem. However, the terminology has become estab- 
lished and we continue its use. 

B. Isolated Word Recognition 

As our first example, consider using HMMs to build an 
isolated word recognizer. Assume we have a vocabulary of 
Vwords to be recognized and that each word i s  to be mod- 
eled by a distinct HMM.I2 Further assume that for each word 
in the vocabulary we have a training set of K occurrences 
of each spoken word (spoken by 1 or more talkers) where 
each occurrence of the word constitutes an observation 
sequence, where the observations are some appropriate 
representation of the (spectral and/or temporal) charac- 
teristics of theword. (We will return to the question of what 
specific representation i s  used later in this section.) In order 
to do isolated word speech recognition, we must perform 
the following: 

For each word v in the vocabulary, we must build an 
HMM A', i.e.,we must estimate the model parameters 
(A, B, ?r) that optimize the likelihood of the training 
set observation vectors for the vth word. 
For each unknown word which i s  to be recognized, 
the processing of Fig. 12 must be carried out, namely 
measurement of the observation sequence 0 = (0, 
O2 . . . O T } ,  via a feature analysis of the speech cor- 
responding to the word; followed by calculation of 
model likelihoods for all possible models, P ( 0  1 A"), 1 
5 v 5 V; followed by selection of the word whose 
model likelihood i s  highest, i.e., 

v* = argmax [P (O)A ' ) ] .  (114) 
l 5 V S V  

The probability computation step i s  generally performed 
using the Viterbi algorithm (i.e., the maximum likelihood 
path i s  used) and requires on the order of V . N2 . Tcom- 
putations. For modest vocabulary sizes, e.g., V = IOOwords, 
with an N = 5 state model, and T = 40 observations for the 

"An excellent description of an isolated word, large vocabulary, 
speech recognizer based on sub-word units isgiven in the descrip- 
tion of the IBM TANCORA system [SO]. Another good reference 
which compares the effects of continuous and discrete densities 
using a 60 000 word vocabulary is [46]. 

HMM FOR 
WORD I 

Fig. 12. Block diagram of an isolated word HMM recognizer. 
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unknown word, a total of I O 5  computations i s  required for 
recognition (where each computation i s  a multiply, and add, 
and a calculation of observation density, b(0)). Clearly this 
amount of computation i s  modest as compared to the capa- 
bilities of most modern signal processor chips. 

S ( n )  
__+ 

C. LPC Feature Analysis [511-[54J 

One way to obtain observation vectors 0 from speech 
samples s is to perform a front end spectral analysis. (We 
assume that we are processing onlythe speech samples cor- 
responding to the spoken word-i.e., all background before 
and afterthespoken word has been eliminated by an appro- 
priate word detection algorithm.) The type of spectral anal- 
ysis that is often used (and the one we will describe here) 
iscalled linear predictivecoding(LPC),anda blockdiagram 
ofthestepsthatarecarriedout isgiven in Fig.13.Theoverall 
system is  a block processing model in which a frame of N A  
samples is processed and a vector of features 0, is com- 
puted. The steps in the processing are as follows: 

1) Preemphasis: The digitized (at a 6.67 kHz rate for the 
examples to be discussed here) speech signal is processed 
by a first-order digital network in order to spectrally flatten 
the signal. 

2) Blocking into Frames: Sections of NA consecutive 
speech samples (we use NA = 300 corresponding to 45 ms 
of signal) are used as a single frame. Consecutive frames 
are spaced MA samples apart (we use MA = 100 correspond- 
ing to 15-ms frame spacing, or 30-ms frame overlap). 

3) Frame Windowing: Each frame is multiplied by an NA- 
sample window (we use a Hamming window) w(n) so as to 
minimizetheadverseeffectsofchoppingan NA-samplesec- 
tion out of the running speech signal. 

4) Autocorrelation Analysis: Each windowed set of speech 
samples i s  autocorrelated to give a set of (p + 1) coeffi- 
cients, where p is the order of the desired LPC analysis (we 
usep = 8). 

5) LPCKepstral Analysis: For each frame, a vector of LPC 
coefficients i s  computed from the autocorrelation vector 
using a Levinson or a Durbin recursion method. An LPC 

g ( n )  BLOCK Xt (n)  XI(”) AUTO- Re(m) LPC/ aL(m) 

FRAME ANALYSIS ck(m) 
- CEPSTRAL 1-az- ’  INTO - 

FRAMES 

N M  w ( n )  

derived cepstral vector i s  then computed up to the Qth 
component, where Q > p and Q = 12 in the results to be 
described later in this section. 
6) Cepstral Weighting: The Q-coefficient cepstral vector 

c,(m) at time frame Pis  weighted by a window WJm) of the 
form [55], [56] 

W,(m) = 1 + - sin . (y), 1 5 m 5 Q (115) 
2 

to give 

e,(m) = c,(m) - W,(m). (116) 

7) Delta Cepstrum: The time derivative of the sequence 
of weighted cepstral vectors i s  approximated by a first-order 
orthogonal polynomial over a finite length window of (2K 
+ 1) frames, centered around the current vector [571, [58]. 
(K = 2 in the results to be presented; hence a 5 frame win- 
dow is used for the computation of the derivative.) The cep- 
stral derivative (i.e., the delta cepstrum vector) is computed 
as 

At,(m) = [ ki-,-c(m)] . G, 1 s m 5 Q (117) 

where G i s  a gain term chosen to make the variances of 
e,(m) and Ai-,(m) equal. (A value of G of 0.375 was used.) 

The observation vector Opused for recognition and train- 
ing i s  the concatenation of the weighted cepstral vector, 
and the correspondingweighted delta cepstrum vector, i.e., 

Qp = {G(m), Ae,(m)} (118) 

k =  - K  

and consists of 24 coefficients per vector. 

D. Vector Quantization [IS], [39J 

For the case in which we wish to use an HMM with a dis- 
crete observation symbol density, rather than the contin- 
uous vectors above, a vector quantizer (VQ) i s  required to 
map each continuous observation vector into a discrete 
codebook index. Once the codebook of vectors has been 
obtained, the mapping between continuous vectors and 

P 

w 

CEPSTRAL 
WE IGHTl NG - I-- Xp(n) - Xp(n) - W (n),  0 <- n <- N-  1 

Rp(m)= Z Xp(n) xp(n+m),Osm<- p 
N-m- - 
n = O  

ar(m) = LPC COEFFICIENTS, 0 5 m <- p 

Ci(m) = CEPSTRAL COEFFICIENTS, 1s  m <- Q 

= cp(m) - w,(m), i <- m <- a 

Fig. 13. Block diagram of the computations required in the front end feature analysis of 
the HMM recognizer. 
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codebook indices becomes a simple nearest neighbor com- 
putation, i.e., the continuous vector is assigned the index 
of the nearest (in a spectral distance sense) codebook vec- 
tor. Thus the major issue in VQ is  the design of an appro- 
priate codebook for quantization. 

Fortunately a great deal of work has gone into devising 
an excellent iterative procedure for designing codebooks 
based on having a representative training sequence of vec- 
tors [18].The procedure basically partitionsthe trainingvec- 
tors into M disjoint sets (where M i s  the size of the code- 
book), represents each such set by a single vector (v,,,, 1 s 
m 5 M), which i s  generally the centroid of the vectors in 
the training set assigned to the mth region, and then iter- 
atively optimizes the partition and the codebook (i.e., the 
centroids of each partition). Associated with VQ i s  a dis- 
tortion penalty since we are representing an entire region 
of the vector space by a single vector. Clearly it is advan- 
tageous to keep the distortion penalty as small as possible. 
However, this implies a large size codebook, and that leads 
to problems in implementing HMMs with a large number 
of parameters. Fig. 14 illustrates thetradeoff of quantization 

from 2 to 10 states would be appropriate. The other idea i s  
to let the number of states correspond roughly to the aver- 
age number of observations in a spoken version of theword, 
the so-called Bakis model [ I l l .  In this manner each state 
corresponds to an observation interval-i.e., about 15 ms 
for the analysis we use. In the results to be described later 
in this section, we use the former approach. Furthermore 
we restrict each word model to have the same number of 
states;this impliesthatthemodelswill work bestwhen they 
represent words with the same number of sounds. 

To illustrate the effect of varying the number of states in 
a word model, Fig. 15 shows a plot of average word error 

"'1 61 

-'" I I ... 1 
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Fig. 15. Average word error rate (for a digits vocabulary) 
versus the number of states N in the HMM. 
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M 

Fig. 14. Curve showing tradeoff of VQ average distortion 
as a function of the size of the VQ, M (shown of a log scale). 

distortion versus M (on a log scale). Although the distortion 
steadily decreases as M increases, it can be seen from Fig. 
14 that only small decreases in distortion accrue beyond a 
value of M = 32. Hence HMMs with codebook sizes of from 
M = 32to256vectors have been used in speech recognition 
experiments using HMMs. 

E. Choice of Model Parameters 

We now come back to the issue that we have raised sev- 
eral times in this paper, namely how do we select the type 
of model, and how do we choose the parameters of the 
selected model. For isolated word recognition with a dis- 
tinct HMM designed for each word in the vocabulary, it 
should be clear that a left-right model is more appropriate 
than an ergodic model, since we can then associate time 
with model states in a fairly straightforward manner. Fur- 
thermore we can envision the physical meaning of the 
model states as distinct sounds (e.g., phonemes, syllables) 
of the word being modeled. 

The issue of the number of states to use in each word 
model leads to two schools of thought. One idea is to let 
the number of states correspond roughly to the number of 
sounds (phonemes) within the word-hence models with 

rate versus N, for the case of recognition of isolated digits 
(i.e., a IO-word vocabulary). It can be seen that the error is 
somewhat insensitive to N, achieving a local minimum at 
N = 6; however, differences in error rate for values of N 
close to 6 are small. 

The next issue i s  the choice of observation vector and the 
way it i s  represented. As discussed in Sections VI-C and 
VI-D, we have considered LPC derived weighted cepstral 
coefficients and weighted cepstral derivatives or (for auto- 
regressive HMMs) the autocorrelation of the LPC coeffi- 
cients as the observation vectors for continuous models; 
for discrete symbol models we use a codebook to generate 
the discrete symbols. For the continuous models we use as 
many as M = 9 mixtures per state; for the discrete symbol 
models we use codebooks with as many as M = 256 code- 
words.Also,forthecontinuous models, we havefound that 
it i s  preferableto use diagonal covariance matriceswith sev- 
eral mixtures, rather than fewer mixtures with full covari- 
ance matrices. The reason for this i s  simple, namely the dif- 
ficulty in performing reliable reestimation of the off- 
diagonal components of the covariance matrix from the 
necessarily limited training data. To illustrate the need for 
using mixture densities for modeling LPC observation vec- 
tors (i.e., eighth-order cepstral vectors with log energy 
appended as the ninth vector component), Fig. 16 shows 
a comparison of marginal distributions b,(0)Jo,. . .On.. . 
against a histogram of the actual observations within a state 
(as determined by a maximum likelihood segmentation of 
all the training observations into states). The observation 
vectors are ninth order, and the model density uses M = 
5 mixtures. The covariance matrices are constrained to be 
diagonal for each individual mixture. The results of Fig. 16 
are for the first model state of the word "zero." The need 
for values of M > 1 is clearly seen in the histogram of the 
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Fig. 16. Comparison of estimated density (jagged contour) 
and model density (smooth contour) for each of the nine 
components of the observation vector (eight cepstral com- 
ponents, one log energy component) for state 1 of the digit 
zero. 

first parameter (the first cepstral component) which i s  
inherently multimodal; similarly the second, fourth, and 
eight cepstral parameters show the need for more than a 
single Gaussian component to provide good fits to the 
empirical data. Many of the other parameters appear to be 
well fitted by a single Gaussian; in some cases, however, 
even M = 5 mixtures do not provide a sufficiently good fit. 

Another experimentally verified fact about the HMM is 
that it i s  important to limit some of the parameter estimates 
in order to prevent them from becoming too small. For 
example, for the discrete symbol models, the constraint that 
bj(k) be greater than or equal to some minimum value E i s  
necessary to insure that even when the k th  symbol never 
occurred in somestatejin thetrainingobservation set,there 
is always a finite probability of its occurrence when scoring 
an unknown observation set. To illustrate this point, Fig. 17 

16 b I 
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€ 

Fig. 17. Average word error rate as a function of the min- 
imum discrete density value e. 

shows a curve of average word error rate versus the param- 
eter E (on a log scale) for a standard word recognition exper- 
iment. It can be seen that over a very broad range (10-l' 5 

E 5 the average error rate remains at about a constant 
value; however, when E is set to 0 (i.e., IO-"), then the error 
rate increases sharply. Similarly, for continuous densities 

it i s  important to constrain the mixture gains clm as well as 
the diagonal covariance coefficients Ulm(r, r )  to be greater 
than or equal to some minimum values (we use in all 
cases). 

F. Segmental k-Means Segmentation into States [42] 

We stated earlier that good initial estimates of the param- 
eters of the bi(O,) densities were essential for rapid and 
proper convergence of the reestimation formulas. Hence 
a procedure for providing good initial estimates of these 
parameterswasdevised and isshown in Fig. 18.Thetraining 

e TRAINING 

MODEL 
INITIALIZATION 

STATE SEQUENCE 
SEGMENTATION 

L 

I 
ESTIMATE PARAMETERS 

OF e(.) 
VIA SEGMENTAL 

K -MEANS 

1 
MODEL 

REESTIMATION 

Fig. 18. The segmental k-means training procedure used to 
estimate parameter values for the optimal continuous mix- 
turedensityfit toafinite number of observation sequences. 

procedure is a variant on the well-known K-means iterative 
procedure for clustering data. 

We assume we have a training set of observations (the 
same as is  required for parameter reestimation), and an ini- 
tial estimate of all model parameters. However, unlike the 
one required for reestimation, the initial model estimate 
can be chosen randomly, or on the basis of any available 
model which is appropriate to the data. 

Following model initialization, the set of training obser- 
vation sequences i s  segmented into states, based on the 
current model h.13This segmentation i s  achieved by finding 
the optimum state sequence, via the Viterbi algorithm, and 
then backtracking along the optimal path. This procedure 
is illustrated in Fig. 19 which shows a log-energy plot, an 
accumulated log-likelihood plot, and a state segmentation 
for one occurrence of the word "six." It can be seen in Fig. 
19 that the states correspond roughly to the sounds in the 
spoken word "six." 

The result of segmenting each of the training sequences 
is, for each of the N states, a maximum likelihood estimate 
of the set of the observations that occur within each state 
S, according to the current model. In the case where we are 
using discrete symbol densities, each of the observation 
vectors within a state is coded using the M-codeword code- 
book, and the updated estimate of the b,(k) parameters is 

6,(k) = number of vectors with codebook index k in 
state j divided by the number of vectors in 
state i .  

13The current or initial model could be one created from another 
set of talkers, or it could be one created from a uniform segmen- 
tation of each word into states. 
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Fig. 19. Plots of: (a) log energy; (b) accumulated log likelihood; and (c) state assignment 
for one occurrence of the word "six." 

In thecase where weare using continuous observation den- 
sities, a segmental K-means procedure is used to cluster the 
observation vectors within each state SI into a set of M clus- 
ters (using a Euclidean distortion measure), where each 
cluster represents one of the M mixtures of the b,(O,) den- 
sity. From the clustering, an updated set of model param- 
eters i s  derived as follows: 

e,,,, = number of vectors classified in cluster m of state j 
divided by the number of vectors in state j 

PI,,, = sample mean of the vectors classified in cluster m 
of state j 

o,,,, = sample covariance matrix of the vectors 
classified in cluster m of state j. 

Based on this state segmentation, updated estimates of the 
a,, coefficients can be obtained by counting the number of 
transitions from state i to j and dividing it by the number 
of transitions from state i to any state (including itself). 

An updated model f i  i s  obtained from the new model 
parameters and the formal reestimation procedure i s  used 
to reestimate all model parameters. The resulting model i s  
then compared to the previous model (by computing a dis- 
tance score that reflects the statistical similarity of the 
HMMs). If the model distance score exceeds a threshold, 
then the old model X i s  replaced by the new (reestimated) 
model x, and the overall training loop i s  repeated. If the 
model distance score falls below the threshold, then model 
convergence is  assumed and the final model parameters 
are saved. 

G. Incorporation of State Duration into the HMM 

In Section IV-C we discussed the theoretically correct 
method of incorporating state duration information into 
the mechanics of the HMM. We also showed that the cost 
of including duration density was rather high; namely a D2- 
fold increase in computation and a D-fold increase in stor- 
age. Using a value of D = 25 (as i s  required for word rec- 
ognition), the cost of the increased computation tended to 
make the techniques not worth using. Thus the following 
alternative procedure was formulated for incorporating 
state duration information into the HMM. 

For this alternative procedure, the state duration prob- 
ability p,(d) was measured directly from the segmented 
training sequences used in the segmental K-means pro- 
cedureofthe previous section. Hencetheestimatesofp,(d) 

are strictly heuristic ones. A typical set of histograms of p,(d) 
for a 5-state model of the word "six" is shown in Fig. 20. (In 
this figure the histograms are plotted versus normalized 
duration (d/T), rather than absolute duration d.) It can be 

DIGIT' S I X  
L I I  0 I I I 1 2  W\ 1 STATE 4 

I I 

c STATE 3 
f 

0 I 
NORMALIZED DURATION (d/T) 

Fig. 20. Histograms of the normalized duration density for 
the five states of the digit "six." 

seen from Fig. 20 that the first two states account for the 
initial Is/ in "six"; the third state accounts for the transition 
to the vowel lil; the fourth state accounts for the vowel; and 
the fifth state accounts for the stop and the final Is1 sound. 

The way in which the heuristic duration densities were 
used in the recognizer was as follows. First the normal 
Viterbi algorithm is  used to give the best segmentation of 
the observation sequence of the unknown word into states 
via a backtracking procedure. The duration of each state is 
then measured from the state segmentation. A postpro- 
cessor then increments the log-likelihood score of the 
Viterbi algorithm, by the quantity 

N 

log p(g, Olh) = log p ( q ,  OIX) + a d  log [p,(d,)l (119) 

where a d  i s  a scaling multiplier on the stateduration scores, 
and d, i s  the duration of state j along the optimal path as 
determined by the Viterbi algorithm. The incremental cost 
of the postprocessor for duration i s  essentially negligible, 
and experience has shown that recognition performance 

/ = 1  
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is essentially as good as that obtained using the theoreti- 
cally correct duration model. 

H. HMM Performance on Isolated Word Recognition 

We conclude this section on isolated word recognition 
using HMMs by giving aset of performance results (in terms 
of average word error rate) on the task of recognizing iso- 
lated digits in a speaker independent manner. For this task, 
a training set consisting of 100 occurrences of each digit by 
100 talkers (i.e., a single occurrence of each digit per talker) 
was used. Half the talkers were male; half female. For test- 
ing the algorithm, we used the initial training set, as well 
as three other independent test sets with the following 
characteristics: 

TS2: the same 100 talkers as were used in the training; 
100 occurrences of each digit 

TS3: a new set of 100 talkers (50 male, 50 female); 100 
occurrences of each digit 

TS4 another new set of 100 talkers (50 male, 50 female); 
100 occurrences of each digit 

The results of the recognition tests are given in Table 1.  
The recognizers are the following: 

LPC/DTW: Conventional template-based recog- 
nizer using dynamic time warping (DTW) 
alignment 

LPC/DTW/VQ: Conventional recognizer with vector 
quantization of the feature vectors (M = 
64) 

HMMNQ: HMM recognizerwith M = 64codebook 
HMM/CD: HMM recognizer using continuous den- 

sity model with M = 5 mixtures per state 
HMM/AR: HMM recognizer using autoregressive 

observation density 

Table 1 Average Digit Error Rates for Several Recognizers 
and Evaluation Sets 

Evaluation Set 

Recognizer Original 
TY Pe Training TS2 TS3 TS4 

LPCIDTW 0.1 0.2 2.0 1.1 
LPCIDTWIVQ - 3.5 
H M M N Q  - 3.7 

- - 
- - 

HMMICD 0 0.2 1.3 1.8 
HMMIAR 0.3 1.8 3.4 4.1 

It can be seen that, when using a VQ, the performance of 
the isolated word recognizer degrades in both the con- 
ventional and HMM modes. It can also be seen that the per- 
formances of the conventional template-based recognizer, 
and the HMM recognizer with a continuous density model 
are comparable. Finally Table 1 shows that the autoregres- 
sive density HMM gives poorer performance than the stan- 
dard mixture density model. 

VII. CONNECTED WORD RECOGNITION USING HMMs [59]- 
1631 

A somewhat more complicated problem of speech rec- 
ognition, to which HMMs have been successfully applied, 
i s  the problem of connected word recognition. The basic 

premise of connected word recognition i s  that the rec- 
ognition is based on individual word models (as opposed 
to models of speech units smaller than words). The rec- 
ognition problem (once the appropriate word models have 
been derived) i s  to find the optimum sequence (concate- 
nation) of word models that best matches (in a maximum 
likelihood sense) an unknown connected word string. In 
this section we discuss one method (called the level build- 
ing approach) for solving for such optimum sequences of 
word models. An alternative method for obtaining the opti- 
mum sequence of words i s  a frame (time) synchronous 
Viterbi search [31]. There are several practical advantages 
of the frame synchronous search (e.g., ease of real-time 
hardware implementation, ease of path pruning, etc.) but 
these do not affect the optimality of the two methods. For 
convenience, we restrict our discussion to the recognition 
of strings of connected digits. 

A. Connected Digit Recognition from Word HMMs Using 
Level Building 

A block diagram of the overall level building connected 
digit recognizer is given in Fig. 21.Thereareessentiallythree 
steps in the recognition process: 

7) Spectral Analysis: The speech signal s(n) i s  converted 
to either a set of LPC vectors or a set of cepstral and delta 

SINGLE 
DIGIT 

PATTERNS 

, RECOGNIZED 

Fig. 21. Block diagram of level building, connected digit 
recognizer. 

cepstral vectors. This defines the observation sequence 0 
of the unknown connected digit string. 

2) Level B ~ i l d i n g ’ ~  Pattern Matching: The sequence of 
spectral vectors (the observations) of the unknown con- 
nected digit string i s  matched against the singleword HMMs 
usingaviterbi scoringalgorithm.Theoutputofthis process 
i s  a set of candidate digit strings, generally of different 
lengths (i.e., different number of digits per string), ordered 
by log probability scores. 

3) Postprocessor: The candidate digit strings are sub- 
jected to further validity tests (e.g., duration), to eliminate 
unreasonable (unlikely) candidates. The postprocessor 
chooses the most likely digit string from the remaining 
(valid) candidate strings. 

Individual digits are each characterized by an HMM of 
the type shown in Fig. 22. (Transitions between words are 
handled by a switch mode from the last state of one word 
model, to the first state of another word model, in the level 
building implementation.) The parameters of the HMMs 
used for characterizing digits are the following: 

1) N = 5 or 8 states for digit models trained from obser- 
vations of a single talker, and N = 8 or 10 states, for 

14Alevel isaword position inastring. Hencea5digit stringwould 
have at least 5 level outputs, one for each digit in the string. 
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Fig. 22. HMM characterization of individual digits for con- 
nected digit recognition. 

digit models trained from observations of more than 
a single talker. 

2) Continuous observation mixture densities with M = 
3 or 5 mixtures per state for single talker models and 
M = 9 mixtures per state for multiple talker models. 

3) Energy probability pi(€) where et i s  the dynamically 
normalized log energy of the frame of speech used 
to give observation vector 0,, and pi( . )  i s  a discrete 
density of log energy values in state j .  The density i s  
derived empirically from the training data. 

4) State duration density pi(d), 1 5 d I D = 25. 

In addition to the observation density, log energy prob- 
ability, and state duration density, each word HMM A' i s  
also characterized by an overall word duration densityp,(D) 
of the form 

pJD) = X@,, a:) (1 20) 

where E,, is the average duration for word v, IJ', i s  the var- 
iance in duration for word v, and 92 i s  the normal density. 

B. Level Building on HMMs 

The way in which level building i s  used on HMMs is  illus- 
trated in Fig. 23. If we denote the set of V word HMMs as 
A',1 5 VI V,thentofindtheoptimumsequenceof HMMs 
that match 0 (i.e., maximize the likelihood), a sequence of 
Viterbi matches i s  performed. For each HMM A', and at each 
level 0, we do a Viterbi match against 0, starting at frame 
(observation interval) 1 on level 1, and retain for each pos- 
sible frame t the following: 

1) P#), 1 5 t I T,  the accumulated log probability to 
frame t ,  at level P, for reference model A', along the 
best path. 

2) f;(t), 1 I t s T, a backpointer indicating where the 
path started at the beginning of the level. 

To compute P,", we need a local measure for the proba- 
bility that observation 0,, with log energy e t ,  occurred in 
state j of model A'. We use, as the observation density, the 
function 

where yc (set to 0.375) i s  a log energy scaling coefficient and 
K1 i s  a normalization constant. The state transition coeffi- 
cients enter the calculation of P:(t) via the dynamic pro- 
gramming optimization in determining the Viterbi path. 

At the end of each level P (where the level corresponds 
to word position within the string), a maximization over v 
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Fig. 23. Illustration of how HMMs are applied in the level 
building algorithm. 

is performed to get the best model at each frame t as fol- 
lows: 

e(t) = max Pp'(t), I I t I T (122a) 

Wf(t) = argmax P#), 1 I t I T (122b) 

f f ( t )  = f,wl%t), I 5 t 5 T (122~) 

1 s v c v  

1 c v s v  

where Wf(t) records the number of the word model which 
gave the best score at frame t ,  level t, and F f ( t )  records the 
backpointer of the best word model. 

Each new level begins with the initial best probability at 
the precedingframeon the preceding level and increments 
the Viterbi score by matching the word models beginning 
at the new initial frame. This process is repeated through 
a number of levels equivalent to the maximum expected 
number of digits in any string (e.g., typically 7). 

At the end of each level, a best string of size &'words (1 
I t 5 L) with probability e ( T )  is obtained by backtracking 
using the backpointer array f f ( t )  to give the words in the 
string. The overall best string is the maximum of e ( T )  over 
all possible levels P. 

C. Training the Word Models 1591, 1611 

The key to success in connected word recognition is to 
derive word models from representative connected word 
strings. We have found that although the formal reesti- 
mation procedures developed in this paper work well, they 
are costly in terms of computation, and equivalently good 
parameter estimates can be obtained using a segmental K- 
means procedure of the type discussed in Section VI. The 
only difference in the procedure, from the one discussed 
earlier, is that the training connected word strings are first 
segmented into individual digits, via a Viterbi alignment 
procedure, then each set of digits i s  segmented into states, 
and the vectors within each state are clustered into the best 
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M cluster solution. The segmental K-means reestimation of 
the HMM parameters is  about an order of magnitude faster 
than the Baum-Welch reestimation procedure, and all our 
experimentation indicates that the resulting parameter esti- 
mates are essentially identical in that the resulting HMMs 
have essentially the same likelihood values. As such, the 
segmental K-means procedure was used to give all the 
results presented later in this section. 

D. Duration Modeling for Connected Digits 

There are two forms of durational information used in 
scoring connected digit sequences, namely word duration 
and state duration. The way in which word duration infor- 
mation i s  incorporated into the model scoring is as follows. 
At the end of each level, for each frame t ,  the accumulated 
probability *(t)  i s  modified by determining the word dura- 
tion 7,(f) as 

7Jf) = t - FF(t) + 1 (123) 

and then multiplying the accumulated probability by the 
word duration probability, i.e., 

where ywo (set to 3.0) i s  a weighting factor on word dura- 
tions, and K2 is a normalization constant. 

State duration probabilities are incorporated in a post- 
processor. The level building recognizer provides multiple 
candidates at each level (by tracking multiple best scores 
at each frame of each level). Hence overall probability scores 
are obtained for RL strings of length L digits, where R is the 
number of candidates per level (typically R = 2). Each of the 
RL strings i s  backtracked to give both individual words and 
individual states within the words. For an L-word string, if 
we denote the duration of statej at level Pas Af( j ) ,  then, for 
each possible string, the postprocessor multiplies the over- 
all accumulated probability@(T) bythe stateduration prob- 
abilities, giving 

L N  

e ( T )  = fl(T) * n [ p ~ ( f ) ( A f ( j ) ) ] y s D  * K, (125) 

where ysD (set to 0.75) i s  a weighting factor on state dura- 
tions, w(P) i s  the word at level P, and K3 i s  a normalization 
constant. The computation of (125) i s  performed on all RL 
strings, and a reordered list of best strings is obtained. The 
incremental cost of the postprocessor computation i s  neg- 
ligible compared to the computation to give fl(T), and its 
performance has been shown to be comparable to the per- 
formance of the internal duration models. 

f=1 j = 1  

E. Performance of the Connected Digit HMM Recognizer 

trained and tested in 3 modes: 
The HMM-based connected digit recognizer has been 

Speaker trained using 50 talkers (25 male, 25 female) 
each of whom provided a training set of about 500 
connected digit strings and an independent testing 
set of 500 digit strings. 
Multispeaker in which the training sets from the 50 
talkers above were merged into a single large training 
set, and the testing sets were similarly merged. In this 
case a set of 6 HMMs per digit was used, where each 
HMM was derived from a subset of the training utter- 
ances. 

3) Speaker independent based on the TI training and 
testing databases. Both the training and testing sets 
had about 113 talkers (different ones were used in 
each set) and the talkers were divided into 22 dialectal 
groups. In this caseaset of4 HMMs per digitwas used. 

In each of the above databases there were variable length 
digit strings with from I to 7 digits per string. 

The performance of the HMM connected digit recog- 
nizer, in these modes, i s  given in Table 2, where the entries 

Table 2 Performance of the H M M  Connected Digit 
Recognizer in Three Modes 

Training Set Testing Set 

Mode UL KL UL KL 

Speaker trained 

Multispeaker 

Speaker independent 

(50 talkers) 0.39 0.16 0.78 0.35 

(50 talkers) 1.74 0.98 2.85 1.65 

(112/113 talkers) 1.24 0.36 2.94 1.75 

in the table are average string error rates for cases in which 
the string length was unknown apriori (UL), and for cases 
in which the string length was known apriori (KL). Results 
are given both for the training set (from which the word 
models were derived), and for the independent test set. 

VIII. HMMs FOR LARGE VOCABULARY SPEECH RECOGNITION 
[61-[131, [31l, [37l, [381, [511, [641-[661 

Although HMMs have been successfully applied to prob- 
lems in isolated and connected word recognition, the antic- 
ipated payoff of the theory, to problems in speech rec- 
ognition, i s  in its application to large vocabulary speech 
recognition in which the recognition of speech i s  per- 
formed from basic speech units smaller than words. The 
research in this area far outweights the research in any other 
area of speech processing and i s  far too extensive to discuss 
here. Instead, in this section we briefly outline the ideas of 
how HMMs have been applied to this problem. 

In the most advanced systems (e.g., comparable to those 
under investigation at IBM, BBN, CMU and other places), 
the theory of HMMs has been applied to the representation 
of phoneme-like sub-words as HMMs; representation of 
words as HMMs; and representation of syntax as an HMM. 
To solve the speech recognition problem, a triply embed- 
ded network of HMMs must be used. This leads to an 
expanded network with an astronomical number of equiv- 
alent states; hence an alternative to the complete, exhaus- 
tive search procedure i s  required. Among the alternatives 
arethestackalgorithm [7landvariousformsofViterbi beam 
searches [31]. These procedures have been shown to be 
capable of handling such large networks (e.g., 5000 words 
with an averageword branchingfactor of 100) in an efficient 
and reliable manner. Details of these approaches are 
beyond the scope of this paper. 

In another attempt to apply HMMs to continuous speech 
recognition, an ergodic HMM was used in which each state 
represented an acoustic-phonetic unit [47l. Hence about 
40-50 states are required to represent all sounds of English. 
The model incorporated the variable duration feature in 
each state to account for the fact that vowel-like sounds 
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have vastly different durational characteristics than con- 
sonant-likesounds. In thisapproach, lexicalaccesswas used 
in conjunction with a standard pronouncing dictionary to 
determine the best matching word sequence from the out- 
put of the sub-word HMM. Again the details of this rec- 
ognition system are beyond the scope of this paper. The 
purpose of this brief discussion i s  to point out the vast 
potential of HMMs for characterizing the basic processes 
of speech production; hence theirapplicabilityto problems 
in large vocabulary speech recognition. 

A. Limitations of HMMs 

Although useof HMM technology has contributed greatly 
to recent advances in speech recognition, there are some 
inherent limitations of this type of statistical model for 
speech. A major limitation i s  the assumption that succes- 
sive observations (frames of speech) are independent, and 
therefore the probability of a sequence of observations P ( 0 ,  
O2 * . Or)  can be written as a product of probabilities of 
individual observations, i.e., 

T 

P ( 0 ,  0 2  . * * Or) = ,n /YOi). 
, = 1  

Another limitation i s  the assumption that the distributions 
of individual observation parameters can be well repre- 
sented as a mixture of Gaussian or autoregressive densities. 
Finally the Markov assumption itself, i.e., that the proba- 
bility of being in a given state at time t only depends on the 
state at t imet - 1, i s  clearly inappropriate for speech sounds 
where dependencies often extend through several states. 
However, in spite of these limitations this type of statistical 
model has worked extremelywell for certain types of speech 
recognition problems. 

IX. SUMMARY 

In this paper we have attempted to present the theory of 
hidden Markov models from the simplest concepts (dis- 
crete Markov chains) to the most sophisticated models 
(variable duration, continuous density models). It has been 
our purpose to focus on physical explanations of the basic 
mathematics; hence we have avoided long, drawn out 
proofs and/or derivations of the key results, and concen- 
trated primarily on trying to interpret the meaning of the 
math, and how it could be implemented in practice in real 
world systems. We have also attempted to illustrate some 
applications of the theory of HMMs to simple problems in 
speech recognition, and pointed out how the techniques 
could be (and have been) applied to more advanced speech 
recognition problems. 
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