![](v3_space.gif) |
![](v3_space.gif) |
![](v3_space.gif) |
![](v3_space.gif) |
![](v3_space.gif) |
![](v3_space.gif) |
![](v3_space.gif) |
![](v3_space.gif) |
![](v3_space.gif) |
![](v3_space.gif) |
![](v3_space.gif) |
![](v3_space.gif) |
|
|
![](v3_space.gif) |
![](v3_space.gif) |
7.5 The Step-Response
|
|
of a RL Circuit (2)
|
|
|
|
|
|
![](v3_space.gif) |
![](v3_space.gif) |
Three steps to find out the step response
|
|
of an RL circuit:
|
|
|
|
|
|
![](v3_space.gif) |
![](v3_space.gif) |
![](v3_space.gif) |
![](v3_space.gif) |
1. |
The initial inductor current i(0) at t = 0+.
|
|
2. |
The final inductor current i().
|
|
|
3. |
The time constant .
|
|
|
|
|
|
![](v3_slide0109_image036.gif) |
|
|
|
![](v3_space.gif) |
![](v3_space.gif) |
Note:
The above method is a short-cut
method. You may also
|
|
determine the
solution by setting up the circuit formula directly
|
using KCL, KVL , ohms
law, capacitor and inductor VI laws.
|
|
|
|
|
|
![](v3_master32_image037.gif) |
|
|
|
|