EOCP 1.3

Check the periodicity for each of the following signals for $0 \le n \le \infty$. If then are periodic, what is the period?

- 1. $\cos(2\pi n + \pi)$
- 2. $(.1)^n \cos(5\pi n + \frac{\pi}{2})$
- 3. *u*(*n*)
- 4. u(n) + 1
- 5. $\delta(n) + u(n)$
- 6. $\cos\left(\sqrt{2\pi n}\right)$
- 7. $u(n) + \cos(2\pi n + \pi)$
- 8. $\cos(2\pi n + \pi) + \delta(n-1)$
- 9. $2\cos(2n-\pi)$
- 10. $\cos(\frac{3}{2}n+\pi) + u(n)$

EOCP 1.4

Use MATLAB to check periodicity for the signal in EOCP 1.3.

EOCP 1.5

Find the power in the following signals:

1.
$$u(n)$$
 $n \ge 0$
2. $u(n)$ $n \ge 1$
3. $\sum_{m=0}^{\infty} \delta(n-m)$ $n \ge 0$

EOCP 1.6

Find the energy in each of the following signals for $-5 \le n \le 5$:

- 1. δ(*n*)
- 2. $\cos(2\pi n)$
- 3. $u(n) . \delta(n)$
- 4. $2u(n)\cos(2\pi n)$
- 5. u(n) . u(-n)
- 6. $n \cos(2\pi n)$

Find the energy in the following signals for n > 0:

- 1. u(n) (.1)ⁿ
- 2. $(.1)^n \cos(2\pi n)$
- 3. $(.5)^n n$

Signal Representation

EOCP 1.7

Consider the following signals.

1. x(n) = u(n) + u(n-1) $0 \le n \le 5$ 2. x(n) = nu(n) $0 \le n \le 5$ 3. $x(n) = (.1)^n \cos(2\pi n + 1)$ $0 \le n \le 5$

a) Use MATLAB to sketch the even and the odd parts.

b) Show that the energy in *x*(*n*) is the sum of the energy in its components, the even and the odd parts.

c) Are the signals bounded?

EOCP 1.8

Usually the discrete signals we deal with in engineering, x(n), are obtained by taking samples from continuous signals x(t). Give five examples where discrete signals are naturally discrete.

EOCP 1.9

Consider the following signals

1. $x(t) = e^{-3t}u(t)$

2. $x(t) = e^{-t}\cos(1000t)u(t)$

a) Let us take samples from both signals every 2 sec. Find *x*(*n*) for both.b) What is the time constant for the first signal?

c) If $0 \le n \le 10$, find the energy in x(n) for both signals.

EOCP 1.10

Let y(n) = y(n - 1) + u(n) with y(-1) = 1 for $n \ge 0$

1. Write down the samples for y(n).

2. Can you find a closed form equation for y(n)?

EOCP 1.11

Let y(-1) = 1 and consider the equation

$$y(n) = 2y(n-1) + u(n)$$

- 1. Find the samples for y(n) for $n \ge 0$.
- 2. Find a mathematical closed form expression for y(n).