180

22,

23.

24,

Chapter 5 Electrons Subject to a Periodic Potential

(a) Verify that at these points, E = Er = 0.

(b) Atthe six corners of the first Brillouin zone, [k| = 47/3a. Make a two-dimensiona]
plot of the E—k relationship for k., k, extending a bit past IKk|. Verify that the
bonding and antibonding bands touch at the six points of the first Brillouin zone
hexagon, showing that graphene is a semimetal (sometimes called a zero bandgap
semiconductor). Also make a one-dimensional plot of E (0, ky) for — k| <k, <
|k|, showing that the bands touch at E = 0 at k, = *+47/3a.

What is the radius of a (19, 0) carbon nanotube? Repeat for a (10, 10) nanotube,
Consider an (n, 0) zigzag carbon nanotube that has radius 0.3523 nm. What is the
value of the index n? ,
Since carbon nanotubes are only periodic along their axis, the transverse wavenumber
becomes quantized by the finite circumference of the tube. Derive (5.66) and (5.67)
by enforcing the condition that an integer number g of transverse wavelengths must
fit around the tube (k; = 2m/hy).

Using (5.68) and (5.69), plot the dispersion curves for the first eight bonding and
antibonding bands in a (5,5), (9,0), and (10, 0) carbon nanotube. Let the axial
wavenumber vary from k = 0 to k = Tt/aq for the armchair tube, and from k = ()
to k = n/a,, for the zigzag tube. Comment on whether each tube is metallic or
semiconducting, and identify the band (i.e., the g value) that is most important. If
the tube is semiconducting, determine the approximate band gap.

Part

11

SINGLE-ELECTRON

- AND FEW-ELECTRON PHENOMENA

AND DEVICES

In previous chapters, Schrodinger’s equation and the principles of quantum physics were
developed, with an emphasis on single particles (primarily electrons) and collections of
noninteracting particles in different spatial regions. The remainder of the text is divided into
two parts, and presents some basic nanoelectronic applications of these principles. In the
next part, we will be concerned with physical phenomena associated with single electrons,
or small numbers of electrons (perhaps, say, 10°-~10° electrons). The main emphasis is
on electrons confined to nanoscopic spaces, such as quantum dots, and devices constructed
from quantum dots and “charge islands.” Nanoelectronics principles are developed for the so-
called “single-electron” devices, including the single-electron transistor, after the important
concept of Coulomb blockade has been discussed. Although most single-electron devices
are at an early stage of development, especially in the area of manufacturability, they offer
the potential benefits of ultralarge scale integration, with device dimensions on the order
of nanometers. They also may exhibit very low power dissipation, and high speed. All of
these positive attributes arise from the need to move only single electrons, or small groups
of electrons, through devices.

The use of the term “single-electron” device merits some discussion. In conventional
microelectronics, currents are typically on the order of 1 A to 1 mA, corresponding to
the movement of 6.25 x 109-6.25 x 10° electrons per microsecond. This occurs through a
device perhaps 100 nm in length. Even considering devices at the upper limit of optical
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Chapter
lithography, perhaps on the order of 10° electrons are involved in performing, for example,
a digital operation. In the following chapters, conversely so-called “single-electron” devices :
are studied. In fact, this is a bit of a misnomer, and in the literature the term “single-

electron precision” device has been suggested as a more descriptive name. This allows for
the fact that usually much more than one electron is involved, although the number may

be relatively small, perhaps 10-10, 000 electrons. It is important to note that these devices T J
are typically sensitive to the transfer of a single electronic charge, and therefore they can , UNNEL UN CTIO NS
operate by manipulating an extremely small number of electrons. However, this generally

positive attribute has it “dark side” as well. For example, if a device is sensitive to the ; AND APPLI C ATI ON S OF TUNNELIN G

movement of a single electronic charge, then the presence of a single charge impurity, in,
say, an oxide layer, may drastically influence device operation.

() (b) ; ‘
Quantum dot formed by cutting a carbon nanotube. Transport through the dot is via tunneling. Image il |
size is 500 x 500 nm?, and the height of the tube is 3 nm. (From Park, J.-Y, et al., “Electrical Cutting :
and Nicking of Carbon Nanotubes Using an Atomic Force Microscope.” Appl. Phys. Lett., 80 (2002):
4446. © 2002, American Institute of Physics.)

In Chapter 4, the general concept of a quantum dot was introduced. A very important
aspect to consider is the connection of the quantum dot to the “outside world,” or, alter-
natively, the interaction of a quantum dot with the outside world. In the second case, .
we often want to “interrogate” the dot remotely. For example, we may want the dot
to glow (i.e., emit photons) when illuminated with radiation, in order to be used as a
marker, for, say, locating a cancer cell to which the dot is attached. We may even want
the dot to cause sufficient heating of the cell to kill it, which has, in fact, already been
used in the treatment of skin cancer. This type of application will be further described in
Chapter 9.
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184 Chapter 6 Tunnel Junctions and Applications of Tunneling
Quantum
Lead dot Lead

Figure 6.1 Nano-object coupled to external leads.

In this chapter and the next, we want to consider the first scenario, where we “con-
nect” a quantum dot to wires via tunnel junctions, in order to form an electronic device
such as a transistor. Not only is this a practical issue, but also, as it turns out, it is one
that leads to interesting phenomena and useful applications. In particular, we want to study
a method of “communicating” with a nanoscopic object by bringing electrical leads into
close proximity to, but not making contact with, the object. This is depicted schemati-
cally in Fig. 6.1, which shows a quantum dot separated from two leads by an insulating
region.

Although the leads do not contact the object, d.c. electrical current can pass through
the system if the gap between the leads and the dot is sufficiently small, despite the fact
that the gap is modeled as a perfect insulator. Indeed, the connection between the object and
the outside world (i:e., the leads) is by a process known as quantum tunneling, or simply
tunneling, and in this chapter we consider tunneling in a general sense. In the next chapter,
the concept of tunneling is applied to the interaction of the dot and electrical leads, and to
related structures such as the single electron transistor.

6.1 TUNNELING THROUGH A POTENTIAL BARRIER

The topic of tunneling is very important for nanoelectronic devices, and is used fruitfully
in a large number of applications. We will consider some of these in the next few sections;
however, we first consider a general tunneling problem.

To investigate tunneling, consider a particle such as an electron, incident from the left
on a potential energy barrier, as depicted in Fig. 6.2.

The potential energy profile is given by

Vo 0<x<a,
= ’ - = 6.1)
v [O, x <0, x >a, (

which models, for example, the energy profile in a metal-insulator—-metal junction, as dis-
cussed subsequently. Other, qualitatively similar potential energy profiles model an electron
bound to an atom or molecule, an electron bound to a quantum dot, and similar confine-
ment structures. We make the assumption that the barrier does not contain any scattering
objects, so that particles transverse the barrier coherently.” This assumption allows one 10

fCertain collisions between particles would lead to incoherent transport, as further discussed in Chapter 1.
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Figure 6.2 Particle with energy E incident on a potential barrier.

solve Schrodinger’s equation with boundary/continuity conditions applied at the barrier’s
interfaces, rather than at various points inside the barrier.

We are interested in two cases; when the particle has total energy E > Vj, and when
E < Vp. According to classical physies, for E > Vj, the particle will simply move past the
potential barrier. This would happen with 100 percent certainty. (Its transmission coefficient
would be unity, and its reflection coefficient would be zero.) For the case E < Vj, the
particle would be reflected from the barrier with 100 percent certainty. (Its transmission
coefficient would be zero, and its reflection coefficient would be unity.) However, quantum
mechanics shows a more complicated behavior.

Starting with Schrodinger’s equation,

ﬁZ dZ
—_———+ V(x x)=E{(x), 6.2
( e ())xv() ¥ () 6.2)
we note that it is difficult to solve (6.2) when V (x) varies as a function of position (i.e.,
in this case, Schrodinger’s equation is a nonconstant coefficient differential equation). If
V (x) is a piecewise constant function, the usual method to avert this problem is to solve
Schrodinger’s equation separately in each region where V is constant, and to connect the
solutions using the boundary conditions for the wavefunction, (3.143).

Proceeding in this manner, in region I (x < 0) where V = 0, we find that Schrédinger’s
equation is

K d?
—%ﬁﬂﬂ (x) = Edy (x), (6.3)
which has solutions
U1 (x) = A 4 BemHr, (6.4)
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where
2m*E ,
k= (6.5)
o ,
In region I (0 < x < a) where V = Vj, Schrédinger’s equation is
o d?
(—%;3;5 +V0) by (x) = Ea (x), (6.6)
which has solutions
Vg (x) = Ce'** 4 Deihar, 6.7)
where
2m* (E — Vp)
k5 = e (6.8)
2 12 ;
Note that for the case £ < Vp,
.,  2m*(E—Vp) -
ky = — <0, (6.9)
and so k; is either pure imaginary or real valued.
Lastly, in region Il (x > a), Schrodinger’s equation is
n* d? §
—%2}3% (x) = EV¥s (x), (6.10)
which has solutions
U3 (x) = Fe'™* 4 Ge™ k%, 6.11)
where
*
=L _p 6.12)

ﬁ2

Since there is no potential disturbance to reflect the wave after it reaches region I,
G =0. ,
Therefore, we have

,q}_] (x) — Aeil\'],t + B(’_ikxx, (6.]3,
qfl (x) — Ceiky_x + De‘ikzx,
b3 (x) = Fe'f'™.

Note that since in region III |r3|? is constant, the particle is equally likely to be found at
any point in this region.
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The boundary conditions (3.143), and continuity of { and ' at x = 0 and at x = a,
lead to

B ki —k3) (1 — ef2ake
O U o1
A (ki + k)T = (ky — kp)” ef2ake
F 4k1k2€i(k2_k‘)a
A (k)P = (ki — ky)? ei2aks’
We can define a tunneling probability as
F? 4E (E -V,
A Vi sin” (kya) + 4E (E — V)

which is obviously the modulus squared of the ratio of the transmitted to incident wave-
functions. We can define a reflection probability as

a

° Vg sin? (kaa)
VZsin® (kaa) +4E (E — V)’

(6.16)

lB
R=—
A

which is the modulus squared of the ratio of the reflected to incident wavefunctions.

If E <V, then, classically, the particle would be turned back by the barrier (T = 0,
R = 1), whereas, classically, for E > V) the particle would move unimpeded past the barrier
(T =1, R =0). However, consider the plot of 7' (E) versus E, as shown in Fig. 6.3.
It can be seen that the classical values are limiting cases for £ <« Vy and E > Vj. In
general, however, for most values of energy 0 < T < 1, meaning that there is some nonzero
probability that the electron will be transmitted through the barrier. For larger values of

T(E)

EIV,

Figure 6.3 Tunneling probability versus energy for a potential energy barrier.
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energy, it is more likely that the electron will be transmitted through the barrier, but even
for relatively large energies the electron may be reflected by the barrier.

If the electron is transmitted through the barrier in the case E < Vj, the electron is
said to tunnel through the barrier for the following reason. The total energy of the electron
is the sum of kinetic and potential energies,

E =FEgeg+ Epg (6.17)
= Exr + Vy, inside the barrier, (6.18)
= Exp +0, outside the barrier. (6.19)

If E < V,, then inside the barrier,
E=FEgrg+ Vy < W, (6.20]

which indicates that the electron’s kinetic energy would be negative (i.e., (1/2) mv? < 0),
as discussed for a similar situation in Section 4.5.1. According to classical physics, kinetic
energy cannot be negative, and therefore, classically, for E < Vj the electron cannot be
found inside the barrier. Thus, classically, the electron cannot get to the other side of the
barrier. However, it is well known from experiments that the electron can indeed cross the
barrier, with probability (6.15), and so the electron is said to tunnel through the barrier
in order to get to the other side. For students familiar with electromagnetics and optics, it
can be appreciated that particle tunneling is analogous to evanescent wave propagation (as
occurs in total internal reflection, sections of below cutoff waveguides, etc.), although that
topic will not be addressed here.

It can be seen that for E/Vy > 1, there is a series of transmission resonances where
T = 1. Rewriting (6.15) as

T=<1+—~Jﬁ——ﬁm%b@)q, (6.21)
4FE (E — W) :
we can see that full transmission (i.e., T = 1) will occur when
sin (kaa) = 0, (6.22)
that is, when
kra = nm, n=0,12,.... (6.23)

At these points, the internal reflections “bouncing around” in the barrier that lead to left-
moving waves exactly cancel, and only the right-moving waves remain. With k, = 2m /3,
where \; is the wavelength in region II, (6.23) becomes

a=n—, (6.24)

so that complete transmission occurs when the barrier thickness is an integral number of
half wavelengths. (This situation is called a transmission resonance.) The same phenomenon

Section 6.1 Tunneling Through a Potential Barrier 189

is encountered in classical electromagnetics and optics, where electromagnetic energy can
pass through a half-wavelength dielectric sheet without reflection.

An important, interesting special case is when E < Vp, and a is sufficiently large. In
this case, we have

o [2mE(E=Vo) \ . [2m; (Vo —E) ,
sin ( ~—7—«&) = sin (1 — a) (6.25)
. 2mk (Vo — E)
= { sinh S R a

where
2m* (Vg — E
w= et —E) (6.26)
K2
so that

N 16E (Vy — E)e‘z‘m.

T
v}

(6.27)

Therefore, the tunneling probability is exponentially decaying as a function of the bar-
rier width a. So, as might be expected, the tunneling probability is low for thick barriers,
and increases as the barrier thickness decreases. Table 6.1 shows the tunneling probability
for a Vy = 0.2 eV barrier for two different barrier widths. It can be seen that a dou-
bling of the barrier width significantly changes the tunneling probability (in a nonlinear
manner).

For the example of tunneling across the gate oxide in a MOSFET, this explains why,
as oxide thickness is decreased, tunneling can become a significant problem, leading to
non-negligible gate currents (as discussed in more detail later). Of course, tunneling is often
a beneficial phenomenon. Flat panel displays make use of field emission (Section 6.3.1),
which is a tunneling phenomenon, and the basis of the scanning tunneling microscope
(described on page 202) is tunneling. Last, many nanoelectric devices rely on tunneling for
their operation, as described in the next chapter.

TABLE 6.1 TUNNELING PROBABILITY FOR
A 0.2 eV BARRIER FOR TWO DIFFERENT

BARRIER WIDTHS.
E (eV) T (a = 1 nm) T (@ =2 nm)
0.01 8.86 x 1073 1x10™*
0.10 0.145 6.11 x 1073
0.20 0.432 0.160
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6.2 POTENTIAL ENERGY PROFILES FOR MATERIAL INTERFACES

Although we have considered tunneling through a simple potential energy barrier in a general
sense, it is informative to consider the nature of the potential energy profile itself. That is, we
should consider what the potential energy profile represents, and whether or not it is a real-
istic model. It turns out that, for our purposes, the tunneling barrier will often be associated
with the junction between two different materials. We consider this topic in the next sectii»n,

6.2.1 Metal-Insulator, Metal-Semiconductor, and Metal-Insulator-Meta
Junctions ~

First of all, the rectangular barrier shown in Fig. 6.2 on page 185 is a fairly gross approx-
imation to the actual potential energy profile usually seen in real tunnel junctions. For
example, consider the interface between metal and vacuum. If we supply enough energy to
the material, electrons can escape from the metal surface.” The amount of energy needed to
liberate electrons from the metal’s surface is the work function, ed. (See also Section 5.4.) In
considering potential energy problems, ed can be thought of as merely a material constant.
Furthermore, the energy of electrons in the metal, at least the most important electrons, is
the Fermi energy, Efr (Section 4.4), which can also be thought of as simply a material con-
stant.¥ Therefore, the metal-vacuum junction can be modeled as shown in Fig. 6.4, where
Eyac is the vacuum energy, and the energy difference Ey,c — EF is, by definition, the work

metal | vacuum

“vac

ed  (work function)

| \ N

Figure 6.4 Energy band depiction of a metal-vacuum interface.

TThis is called thermionic emission if we supply thermal energy, photo emission if we supply electromug-
netic energy (photons), and simply field emission if energy is supplied by an electric field.
#For copper and gold the work function is on the order of 4.5-5.0 eV, and for copper, Er 2 7 eV at room

temperature.
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function ed. The shading below Ey in the metal indicates that energy levels below Ey are
filled with electrons, since Er is the energy of the most energetic electrons.

Therefore, for example, thermal emission involves supplying sufficient thermal energy
such that the electron’s energy is raised at least e¢ above the level Er, and then the electron
can escape from the metal. Thus, in this case, the electron effectively goes over the barrier,
and the electron emerges from the metal with energy greater than or equal to Ef + ed
(depending on how much energy is supplied).

If an insulator replaces the vacuum, then the work function is replaced with a reduced
(or modified) work function ed’, which is the energy required to liberate an electron from the
metal’s surface into the insulating region (i.e., into the conduction bandedge of the insulator
(Section 5.4)). For example, since the electron affinity, ey, of SiO; is 0.9 eV, the modified
work function of a metal-SiO; junction is ed’ = e — ex = ed — 0.9. The modified work
function for several metal-SiO, junctions is shown in Table 6.2.

Furthermore, if the vacuum region is replaced by a semiconductor, the resulting
metal-semiconductor junction behaves in a similar manner to the metal—insulator junction,
although the energy bands on the semiconductor side become curved, rather than form-
ing straight lines, and the barrier height is approximately one-half of the bandgap energy.
For example, Fig. 6.5 shows the energy band diagram for a metal-semiconductor junction
before the materials are joined (the semiconductor is assumed to be n-type, and ed,, > eds),
and Fig. 6.6 shows the junction after the two materials are brought together and thermal
equilibrium is established.

The band bending on the semiconductor side is due to the fact that upon contact,
charges will flow across the junction (in this case, electrons from the semiconductor will
cross into the metal, since E; > EF meta) until the Fermi levels of the two materials are
aligned. For this example, electrons are depleted from the semiconductor near to the inter-
face, resulting in a net positive charge and an upward bending of the energy bands near to,
and on the semiconductor side of, the interface. There is no band bending on the metal side,
since, for instance, there is no voltage drop in the metal.” This results in a barrier (called a

TABLE 6.2 WORK FUNCTION FOR A
METAL-VACUUM INTERFACE, AND
MODIFIED (REDUCED) WORK FUNCTION
FOR A METAL-SiO; INTERFACE (FROM [9]).

Metal ed (eV) ed’ (eV)
Al 4.1 3.2
Ag 5.1 4.2
Au 5.0 4.1
Cu 4.7 3.8

Goser, K., P. Glosekotter, and J. Dienstuhi (2004).
Nanoelectronics and Nanosystems—From Transis-
tors to Molecular and Quantum Devices, Berlin:
Springer-Verlag.

TIf the metal is approximated as a perfect conductor, there is no band bending on the metal side. However,
if the metal is more accurately modeled as an imperfect conductor, band banding does occur, but is limited to a
very small region near the surface of the metal.
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Figure 6.5 Metal-semiconductor junction before contact.
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Figure 6.6 Metal-semiconductor junction after contact at thermal equilibrium.
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Schottky barrier) to electron flow, with the barrier height given by
edp = edy — exs- (6.28)

The depleted region is called a space charge layer, and has approximate width W. The exact
form of the energy band profile in the depletion region must be obtained by solving Poisson’s
equation for the charge profile, and will not be discussed here.! The resulting junction is
called a Schottky diode, since upon applying a voltage bias positive with respect to the
metal, the barrier will be lowered,? allowing large currents to flow metal to semiconductor
(i.e., for electrons to cross from the semiconductor to the metal), and applying a voltage
bias negative with respect to the metal, the barrier will be raised, impeding current flow.

Many applications require an ohmic contact, in which current can flow in either
direction with very little resistance. Being able to align the energy levels of the metal and
semiconductor would help accomplish this, but interface effects also play a role. Often
ohmic contacts are made by heavily doping the semiconductor near the metallic contact.

In summary, the junction between two materials presents a change in potential energy,
and results in either a step change in energy, as in the case of a metal-vacuum or metal—
insulator junction, or a more complicated energy profile, such as for a metal-semiconductor
junction. It can then be seen that the energy profile depicted in Fig. 6.2 on page 185 is a
model for a metal-vacuum-metal junction, as shown in Fig. 6.7 (assuming identical metals
in thermal equilibrium on either side of the vacuum region).

metal

vacuum ’ metal
i
i
i

E

vac

ed

Er
O\ NN \
NS \
\\\ \\\ \\\\\
NN NN

Figure 6.7 Metal-vacuum-metal junction.

This is standard material in semiconductor device physics texts.
See Section 5.4.3 for the effect of an applied voltage on energy bands.
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A metal-insulator—metal structure would have a very similar energy profile, a]thnugh
the modified work function of the metals, e¢’, would replace the work function ed. A
metal-semiconductor—metal junction would also lead to a similar profile, although with
band bending in the semiconductor.

To consider the effect of an applied field on a material junction, we can examine the
metal-vacuum—metal junction in Fig. 6.7. In this case, it is convenient to consider applying
a voltage Vj across the vacuum region, resulting in the electric field magnitude & = Vy/d.
where d is the thickness of the vacuum region. Combining this result with the work function
then leads to the total potential energy profile

ed —q.Vox/d (6.29)

in the vacuum region. Of course, a similar result holds if the vacuum is replaced by an
insulating material, with the resulting band diagram shown in Fig. 6.8. If the insulator were
a vacuum, then the barrier height would extend up to the vacuum level, i.e., ed’ = e¢.

At this point, it is worthwhile to consider the possible tunneling currents that arise
in a metal-insulator—metal junction under an applied bias. Three possible currents (13, I,
and /I3) are shown in Fig. 6.8. We assume that in each metal region, all states below Eg
are filled and all states above Ep are empty. As such, we must have I} = 0, since this
current would result from the flow of electrons having energy above Er; however, these
energy states are empty. Current /3 would result from filled states on the left tunneling into
already filled states on the right, and so, since this is impossible, I3 = 0 as well. The actual

E
-V, +
Epted +
Ep+ed +
I,=0
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Ep 1 ‘
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NN
Ep—eVy + OO
\\\\ I
SO\ NN
S NN SO
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Figure 6.8 Metal-insulator-metal junction band diagram for an applied voltage Vj. Bias is positive
on right side, and negative on left side. :
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tunneling current arises from filled states on the left tunneling into unfilled states on the
right, resulting in tunneling current /3.

6.3 APPLICATIONS OF TUNNELING

As described briefly earlier, there are many applications of tunneling, especially in the emerg-
ing area of nanoelectronics. Tunneling can be used for beneficial purposes, or it can be detri-
mental to device performance. Next we briefly examine several different aspects of tunneling.

6.3.1 Field Emission

Excepting Fig. 6.8, the energy profiles described in the previous section correspond to the
case of no applied field or bias. That is, the energy profile reflects the junction after the
materials are joined together, and after thermal equilibrium is established, which equalizes
the Fermi levels. However, as might be guessed from Section 5.4.3, the presence of an
electric field or voltage modifies the band structure. In particular, we know that an electric
field or voltage tilts energy bands, depressing the energy band on the positive side of the field.
Therefore, if an electric field or voltage is applied across the junction between a metal and a
vacuum, due to (6.29), the potential energy profile becomes triangular, as shown in Fig. 6.9.

As described previously, if energy Er + e¢ or more is supplied to the structure, an
electron can go over the energy barrier, as depicted in Fig. 6.10. However, note that as
the applied electric field magnitude is increased, the slope of the energy profile in Fig. 6.9
becomes greater, and the triangular barrier becomes thinner. Thus, for a sufficiently large
electric field, electrons can easily tunnel through the thin barrier, as depicted in Fig. 6.11.
This is called field emission, or cold emission, since the electrons emerge from the metal
with energies lower than Efp + e¢. This is also called Fowler—Nordheim (FN) tunneling,
named after the researchers who investigated field emission in the 1920s. It can be shown
that the tunneling probability through the triangular barrier depicted in Fig. 6.9 is

Wore
T =exp | =Y (e — (E — Ep)*? ), (6.32)
31q.1Eh

*This result comes from the Wentzel-Kramers—Brillouin (WKB) approximation of the wavefunction ¥ (x)
in a region of slowly varying potential energy V (x). This is described in standard textbooks on quantum mechanics,
and the main result is that for a tunnel barrier extending from x; to xp,

X2 00
T ~ o Hxi Pydx (6.30)

where

5(-’()':\/2;7"—;(‘/@)-15). (6.31)

When V (x) has a triangular shape, (6.32) results. Although the discontinuity in V' violates the condition of V (x)
being slowly varying, the result is approximately correct.
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Figure 6.9 Metal-vacuum interface in the presence of an applied electric field £.

where E is the energy of the electron (often the case E = Ef is of interest), ed is the
barrier height, and £ is the magnitude of the electric field. If the vacuum region is replaced
by an insulator, then we use the metal—insulator work function ed’, rather than e¢.

A good application of Fowler—Nordheim tunneling is to the description of field emission
by carbon nanotubes. As described in Section 5.5, carbon nanotubes have nanoscopic radius
values, and thus possess an extremely sharp tip that concentrates the electric field to a very
small region of space. This strong field enhances tunneling through the vacuum barrier. As an
example, an SEM image of the apparatus to measure the field emission /-V characteristics of
an individual carbon nanotubes is shown in Fig. 6.12, along with the best fit Fowler—Nordheim
result. The field-emitted current begins at approximately 91 V, and saturates around 150 V..

To apply the Fowler—Nordheim result to model this situation, we must obtain the
tunneling current. In general, tunneling current is related to the product of the incident
electron density multiplied by the tunneling probability, which is then integrated over various
states.” For the triangular-like barrier presented by field emission, the result is*

1.5 x 107 (10 4) (eq>)“/2
I=A-—"" """ £ex exp | —6.44 x 10°—2— ), (6.33)
b P\ P (

"The method for determining tunneling current is the same as that described in Section 10.2.3 for a slightly
different application; the basic equation for tunneling current is (10.49), where the limits of integration may Lhange
to account for the bandstructure of the material.

See [11]-[14].
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metal vacuum

Ep

AN

Figure 6.10 Metal-vacuum interface in the presence of an applied electric field £, where an electron
at the Fermi level goes over the potential barrier.

where A has the dimension of area (m?) and the work function ed has units of electron
volts. The local field £ is related to the applied field V/d by £ = yV/d, where the field
enhancement factor y quantifies the ability of the emitter to intensify the applied field. For
the results shown in Fig. 6.12, e¢p = 4.9 eV, y = 90, and A = 5 x 107! m?. These values
are obtained from the measurement by noting that

I 1.5 x 107° o(ed)*d 1 104 ,
In— =In|{A-—2"——vy*) + | -6.44 x 10 — + , (6.34)
"y2 “( ebd? y) ( vy vV /%
or
L =4 (—erm + (6.35)
—_— = —cr— +c3 ), .
Ny = €2y, + 63

where c;—c3 are constants. Thus, a plot of In ([ / Vz) versus 1/V should be linear with a
negative slope. In the insert of Fig. 6.12, the experimental In (1/V?) — (1/ V) curve is shown,
which indeed has the desired behavior. Since d is known for the measurement system, and
the approximate value of the work function for the CN is known, y can be determined from

V32 4
¢ = 6.44 x 109@’)—, (6.36)
Y
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Figure 6.11 Metal-vacuum interface in the presence of an applied electric field &, where an electron
at the Fermi level tunnels through the potential barrier.

where ¢; is obtained from the measured slope. Then, A is determined from the constant -

1.5 x 10
o =n (a2 107 2 (6.37)
edd? ,

since the constant c3 = 10.4/4/ed is known.

The issue of emission stability and device lifetime is a possible concern for CN field
emitters. While continuous operation without degradation of CN field emission sources
has been demonstrated for time frames exceeding one year, single emitters and CN arrays
have been observed to fail for reasons that are not currently well understood. Failure may
be due to CN tip damage by large emission currents, although the tube environment (gas
concentration, temperature, etc.) seems also to play a role. Nevertheless, it is expected
that tunneling-based carbon nanotube flat-panel displays may be commercially available
in the near future. Other devices, such as flash memories that use tunneling, have been
commercially available for some time.

6.3.2 Gate-Oxide Tunneling and Hot Electron Effects in MOSFETs

Tunneling is a very important aspect in MOSFETs and similar structures, especially as the
feature size is reduced. Consider the usual n-type MOSFET structure shown in Fig. 6.13,
where s, d, and g indicate the source, drain, and gate, respectively.

Section 6.3 Applications of Tunneling 199

Local field [V/nm]

0

1076

1077 1

1079 1

Current [A]

]0-10 -

1071 A

10712 f f
0 50 100 150 200

Voltage [V]
(a) (b)

Figure 6.12 (a) SEM image of the experimental setup for measuring field-emission /—V character-
istics of an individual carbon nanotube. The nanotube length is & = 1.4 wm, and the tube radius is
7.5 nm, with the anode positioned at d = 2.65 nm. (b) Experimental / -V characteristics (solid line) and
the best fit Fowler—Nordheim prediction (dashed line; ed = 4.9 eV, y =90, and A = 5 x 107'® m?)
for an individual MWNT. The insert of (b) is described in the text. (From Bonard, J. M. et al., “Field
Emission of Individual Carbon Nanotubes in the Scanning Electron Microscope,” Phys. Rev. Lett. 89
(2002): 197602. Copyright 2002, American Physical Society.)

£

The oxide layer is conventionally formed by oxidizing the silicon substrate, forming
an SiO; insulating barrier between the gate electrode and the rest of the device.” As shown
in Fig. 6.13, there is no conduction channel between the source and the drain (both n-type
Si) when the gate voltage V, is zero; thus, I;; = O irrespective of V;;. When a positive
gate voltage V, > 0 is applied, and has sufficient magnitude,* an inversion layer is formed
under the gate, connecting the source and drain. The inversion layer is formed since positive
voltage V, pushes away holes, and attracts electrons under the gate, forming, in effect, an
n-type channel, as shown in Fig. 6.14. This allows current flow in the induced channel
from drain to source upon applying a potential Vz; > 0. From an energy barrier viewpoint,
when V, = 0, there is a large energy barrier between source and drain. As V, is increased,
this barrier is pushed down, eventually below the filled states of the source and drain, and
conduction can take place. MOSFET characteristics are reviewed in Appendix C.

Considering the gate—oxide—-channel junction, we have something like a metal—
insulator-metal junction, and, therefore, the potential energy profile of Figures 6.7 and

"High dielectric constant insulators are being developed for MOS devices that will likely replace SiO,,
allowing for thicker oxide layers resulting in less tunneling.

*In order to induce a channel, we need V, > V;, where V, is called the threshold voltage, where typically
V; is on the order of a volt.
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Figure 6.13 Physical structure of an n-type MOSFET. The regions denoted as n* are heavily doped,
n-type Si, and p denotes the p-type Si substrate. For the gate electrode, typically polycrystalline silicpn
(polysilicon) is used for a variety of technical reasons.

induced channel |

Figure 6.14 MOSFET with positive gate voltage, creating a n-type conducting channel between
source and drain.

6.8 approximately applies. That is, for simplicity, we are modeling the inverted p-type
semiconductor channel as a metal. A more careful analysis would take into consideration
the fact that the channel is actually a semiconductor, and the band diagram would differ a
bit on the channel side due to band bending.

Of course, in an ideal classical MOSFET, electrons do not travel between the channel
and the gate (i.e., I, = 0) because of the presence of the insulating oxide region. However, in
light of our previous discussions, it is obvious that for sufficiently thin oxides, electrons will
be able to cross (tunnel through) this energy barrier, leading to® I, # 0. There are several

"This tunneling current is in addition to any current that may be present due to the oxide being an imperfect
insulator, perhaps due to the presence of trapped charge impurities and other defects.
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possible effects relating to quantum tunneling through the oxide, and next we mention two
of these.

Hot Electrons. Drain-source current obviously results from accelerating electrons
via the source-drain voltage, V,;,, which results in a horizontal electric field in the channel. As
these electrons are accelerated, they gain kinetic energy. If they gain sufficient kinetic energy,
they may tunnel through the oxide.” They may gain a large amount of kinetic energy from
either a large Vy; and correspondingly large horizontal electric field (€5 o< V,, /L, where
L is the channel length), or from a short channel. Note that this effect is also influenced
by the presence of the vertical electric field in the oxide due to V,. The end result is that
electrons that are supposed to transverse the channel and reach the drain may, because of
their high kinetic energy, instead tunnel through the oxide and contribute to an undesired
gate current, as shown in Fig. 6.15. This is called the hot-electron effect, since the highly
energetic electrons are considered “hot.”

Fowler-Nordheim Tunneling. The second possibility is that, if a strong gate
voltage is applied, electrons will be energetic enough from this field alone to become likely
to tunnel through the oxide, as depicted in Fig. 6.16.

It is obvious that nonzero gate current can be attributed to a combination of tunneling
events (as well as defects, trapped charge states, etc.), all of which lead to significant gate
currents if the oxide layer is sufficiently thin. An accurate analysis results from a self-
consistent numerical solution of coupled Poisson and Schrodinger’s equations. Poisson’s
equation is used to obtain the potential profile, and an effective mass Schrodinger’s equation
provides the wavefunction, from which the probability current can be obtained using (3.187).
In some cases a Fowler—Nordheim model provides reasonable accuracy. (One major cause

oxide

—e0 £
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Figure 6.15 Depiction of the hot-clectron effect, where electrons transversing the channel gain suf-
ficient energy from the source-drain electric field to-tunnel through the oxide energy barrier.

TRecall that tunneling is a random process, and that, for any energy, the electrons may tunnel. However,
the tunneling probability goes up if the electrons’ energy increases, or if the barrier thickness decreases.
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Figure 6.16 Depiction of Fowler—Nordheim tunneling. Strong gate voltage provides electrons in
channel with sufficient energy to tunnel across the oxide energy barrier.

of inaccuracy in the Fowler—Nordheim model is that the ‘potential energy profile is assumed,
rather then obtained rigorously.)

For typical oxides, thickness values less than approximately 1.5 nm lead to relatively
high tunneling rates. However,; tunneling can occur even for moderately thick oxides if the
gate voltage is high. For example, Fig. 6.17 shows gate current versus gate voltage for an
n*-poly silicon gate (doping concentration is 1 x 10*! cm™>) n-type MOSFET structure,
with oxide thickness values of 5, 8, and 10 nm. It can be seen that the Fowler—Nordheim
tunneling model’ (symbols) agrees well with the measured values (solid curves).

Gate current severely impacts standby power consumption and device functionality.
The semiconductor industry is considering a variety of approaches to combat this problem,
including using new oxide materials, and different MOSFET structures.

6.3.3 Scanning Tunneling Microscope

An important application of tunneling is to the characterization of material surfaces using
the scanning tunneling microscope (STM).* The STM uses an extremely fine metallic tip
in close proximity to a material surface, as shown in Fig. 6.18, resulting in the potentlal
energy profile depicted in Fig. 6.19 (for the case of no applied bias).

From our previous analysis, it is clear that the tunneling rate is very strongly dependent
on the energy barrier width, which, in this case, is related to the separation between the tip
and the surface, and to the local density of electrons at the surface. When the tip-to-surface
distance is on the order of angstroms, the tunneling current may be on the order of nA, and

This particular Fowler-Nordheim model is actually somewhat of a hybrid model, and is based on parami=
eters obtained from the self-consistent numerical solution of the coupled Poisson and Schrodinger’s equations
(assuming m} = 0.5m, for the electron effective mass in the Si0; oxide).

*In 1986, the Nobel prize in physics was awarded to Gert Binnig and Heinrich Roher at IBM Ziirich for
their work on developing the STM.
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Figure 6.17 Gate tunneling current versus gate voltage for an n*-poly silicon gate (doping concen-
tration is 1 x 102! cm™) n-type MOSFET with oxide thickness values of 5, 8, and 10 nm. The silicon
substrate is doped at concentrations of 5 x 10'7 cm™3, 3.5 x 10'7 em™3; and 1 x 107 cm™3, respec-
tively. The solid curves are measured values; and the symbols are from a Fowler—Nordheim tunneling
model. (From Quan, W.-Y., D. M. Kim, and M. K. Cho, “Unified Compact Theory of Tunneling Gate
Current in Metal-Oxide-Semiconductor Structures: Quantum and Image Force Barrier Lowering,” J
Appl. Phys. 92 (2002): 3724. Copyright 2002, American Institute of Physics.)

Tip

Figure 6.18 Material sample interrogated by probe tip. Most of the tunneling arises between the
bottommost atom in the tip, and the nearest atom on the surface, shown in black.

will be very sensitive to the tip-to-surface separation. Thus, as long as the tip position can
be controlled to angstrom precision, the surface can be mapped in atomic detail.

It can be appreciated that the STM can function either by moving the tip at a constant
height and measuring the change in tunneling current as the tip-to-surface separation varies
due to surface features, or by attempting (via feedback) to keep the current constant by
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Figure 6.19 Energy diagram for a scanning tunneling microscope. Tunneling occurs between the
sample and the tip, surmounting the work function of the material-vacuum interface. Diagram shown
for the case of no applied bias. i

varying the tip height. In the first method, as the tip moves from location to location on the
surface, the amount of tunneling current will become bigger or smaller depending on the
local electron density, which is itself related to the positions of the atoms. For example, since
the tunneling current falls off exponentially with distance, when the tip is over an atom,
the current will be much larger than when the tip is between atoms. However, because
of the exponential dependence of the tunneling current, this results in an image in which
the atomic peaks look much higher than their actual height. (A true image would result
if the tunneling current depended linearly, rather than exponentially, on the sample-tip
separation.)

In the constant current method, a piezoelectric crystal is used to vary the tip height, in
order to maintain a constant tunneling current. The piezo electric material expands linearly
as a function of applied voltage, and, therefore, the voltage needed to expand the crystal
(thus moving the tip) to keep the current constant varies linearly with the position of the
atoms on the sample. This voltage can be used to record the height of the tip, which is
related to the surface features. 8

Note that the STM image is really an image of the local electron density, and not
explicitly a tomographic map of the surface. Therefore, it can be used to image the local
density of states, as described further in Section 8.1. For example, if an oxygen atom is
located on a metal surface, it will appear as a depression in an STM image, even though
the atom is on top of the metal surface. This is because the tip needs to move closer to the
surface to maintain the same tunneling current, due to the (roughly) insulting properties of
the oxygen atom. Therefore, although the STM itself does not need a vacuum to operate,
the STM is often operated in an ultrahigh vacuum to avoid contamination of the sample
from the surrounding environment. :
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stitut fir Aligemeine Physil, TU Wien

Figure 6.20 STM image of a dislocation in a PtNi alloy. (Courtesy Institut fiir Allgemeine Physik,
Vienna University of Technology.)

Figure 6.21 STM image of a nickel surface. (Image reproduced by permission of IBM Research,
Almaden Research Center. Unauthorized use not permitted.)

Figure 6.20 shows an STM image of a dislocation in a PtNi alloy, and Fig. 6.21 shows
an STM image of the surface of nickel.

Similar in application, although not in operating principles, is the atomic force micro-
scope (AFM). In AFM, a cantilever with a sharp tip is brought into close proximity to
a sample surface. The force between the tip and the sample leads to a deflection of the
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cantilever according to Hooke’s law. The deflection may be measured, for example, using
a laser.

6.3.4 Double Barrier Tunneling and the Resonant Tunneling Diode

An interesting case occurs when one considers two barriers separated by a small distance,
forming a potential well as shown in Fig. 6.22. This leads to the topic of resonant tunneling.
We assume that the barriers are sufficiently thin to allow tunneling, and that the wel|
region between the two barriers is also sufficiently narrow to form discrete (quasi-bound)
energy levels, as shown in Fig. 6.23.
The analysis of the double barrier structure shown in Fig. 6.22 is essentially the
same as considered at the beginning of Section 6.1, although we now have five regions

E

0 a a+ L 2a + L

Figure 6.22 Double barrier system forming a potential well.

Ep

0 a a+ L 2a+ L

X

Figure 6.23 Double barrier structure forming a sufficiently narrow well so that energy levels in the
well are well quantized. Energy levels E;, E,, and E3 depict quasi-bound states.
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to consider, with four interfaces at which to match boundary conditions. Therefore, the
analysis is straightforward but tedious. The result for the transmission coefficient of the
double symmetric barrier shown in Fig. 6.22 is

4R -
T = (1 -+ 72-1- sin® (kL — 9)) , (6.38)
1
where 77 and R; are the transmission and reflection coefficients for a single barrier of width
a, given by (6.15) and (6.16), respectively; L is the length of the well between the barriers,
and

2k1ks cos (kra)

tan 6 = , (6.39
T K k) sin (k) )

where
K2 = 2";12[7 2 = 2me(E — Vo) (;— Yo) (6.40)
From (6.38), it is easy to see that the transmission probability becomes unity when
sin(kiL —6) =0, (6.41)
that is, when
kL ~0=nn, n=0,1,2,.... (6.42)

It turns out these transmission peaks (T = 1) will occur when the energy of the
incoming electron wave (E) coincides with the energy of one of the quasi-bound states
formed by the well. To see this for a simple special case, assume that Vy > E, such that
|ka] > |ky|. Then, tan® — O such that 6 — 0, leading to

kiL =nm.
Using the expression for k;, we see that

E=E, = 2':: (%)2 (6.43)

which is exactly the same as the result for the quantized energy levels in a one-dimensional
quantum well (4.35).

The double barrier tunnel junction has important applications to a device known as a
resonant tunneling diode. The operation of these diodes can be appreciated from considering
the influence of bias on the energy band diagrams for the double barrier system. We make use
of the fact that when the incident energy E is very different from the energy of a quasi-bound
state E,, transmission will be low, and as E — E,, transmission will increase, becoming a
maximum when E = E,. For example, assume that incident electrons have energy E, and
that, at first, all of the quasi-bound states E, lie above E, as shown in Fig. 6.24.
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Figure 6.24 Double barrier junction with no applied bias. E is the energy of the incident eleciron,
and E| » are the energy levels of the quasi-bound states in the well.
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Figure 6.25 Current—energy characteristic for a resonant tunneling junction, where E is the energy
of the incident electron and E; is the energy level of the first quasi-bound state in the well.

As L increases, tunneling will increase, reaching a peak when E = E;. After that
point, a further increase in E will result in a decreasing current, as shown in Fig. 6.25. This
decrease of current with an increase of bias is called negative resistance. Further peaks and
valleys will occur as [ E] approaches, and then moves past, other quasi-bound states.

A typical structure is made by using n-type GaAs for the regions to the left and
right of both barriers, intrinsic GaAs for the well region, and AlGaAs or AlAs for the
barrier material. Tunneling is controlled by applying a bias voltage across the device. For
the case of no applied bias, the energy band diagram is similar to that shown in Fig. 6.24.
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Figure 6.26 Double barrier junction under the action of an applied bias.

For an applied bias Vj, positive on the right side of the double junction, an appreciable
current begins to flow when the quasi-bound state is pulled down to the Fermi level of
the left region, as shown in Fig. 6.26. Current reaches a maximum when the level of the
quasi-bound state is equal to the conduction bandedge of the left region.

Superlattice. Going beyond a double barrier structure is a periodic array of barri-
ers, forming what is known as a superlattice. If enough layers are used, this structure results
in periodic behavior (and associated band formation), as was found for crystalline materials
in Chapter 5. The result is a one-dimensional artificial crystal, although the period is much
longer than that found for a crystal (whose periodicity is governed by interatomic spacing).

As a simple approximate analysis, the Kronig—Penney model (Fig. 5.7 on page 138)
can be used, where the barrier thickness a, and the well thickness a; correspond to the
thickness of the material layers. Typically, a large bandgap and a small band gap material
is used (i.e., alternating layers of a large bandgap material having thickness a;, and a small
bandgap material having thickness a;). The analysis presented in Section 5.3 is appropriate
for an infinite superlattice, or for a sufficiently long structure. The analysis of a finite
superlattice can be done using the method described in Section 6.1, although efficient matrix
methods can be used to avoid generating large numbers of simultaneous equations.

As a rough approximation, we can consider the energy levels formed by one isolated
well. Then, using the ideas of the interacting systems model presented in Section 5.4.2,
we see that for a collection of N interacting wells, the energy levels split into N discrete
levels, and, as N becomes large, energy bands are developed. In this way, an artificial mate-
rial can be made with specific band characteristics. Bloch oscillations can be sustained in
superlattices, since the band structure can be precisely controlled. (An important aspect is
the size of the first Brillouin zone.) Superlattice structures have been used as infrared oscil-
lators and detectors, in various optical and quasi-optical devices, in transistor applications,
and in a host of other areas, including heterostructure fabrication and material coatings.
Heterostructures are introduced in Chapter 9.
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6.4 MAIN POINTS

In this chapter, we have examined particle tunneling through barriers, and implications ang
applications of tunneling. In particular, after studying this chapter, you should understand

quantum particle tunneling through simple energy barriers;

energy profiles as models of material interfaces, and what material junctions are rep-
resented by rectangular and triangular energy profiles;

field emission, and applications to carbon nanotube emitters;

gate-oxide tunneling in MOSFETs;

principles of the scanning tunneling microscope;

tunneling through double barriers, and applications to the resonant tunneling diode;
the idea of a superlattice, and how it can behave as an artificial crystal. ;

6.5 PROBLEMS

1.

Plot the tunneling probability versus electron energy for an electron impinging on
a rectangular potential barrier (Fig. 6.2, page 185) of height 3 eV and width 2 nm.
Assume that the energy of the incident electron ranges from 1 eV to 10 eV.

. Plot the tunneling probability verses barrier width for a 1 eV electron impinging on

a rectangular potential barrier (Fig. 6.2, page 185) of height 3 V. Assume that the
barrier width varies from 0 nm to 3 nm.

. A 6 eV electron tunnels through a 2-nm-wide rectangular potential barrier with a

transmission coefficient of 1078, The potential energy is zero outside of the barrier,
and has height Vj in the barrier. What is the height V; of the barrier?

. Can humans tunnel? Consider running 1 m/s (assume that you have no potential

energy) at an energy barrier of 50 J that is 1 m thick.

(a) If you weigh (i.e., your mass is) 50 kg, determine the probability that you will
tunnel through the barrier. '
(b) Consider that in order for tunneling to have a reasonably large probability ‘of
occurring, kpa can’t be too large in magnitude. Discuss the conditions that would
result in this happening.

. Referring to the development of the tunneling probability through a potential barrier,

as shown in Section 6.1, apply the boundary conditions (3.143) to (6.13) to obtain
(6.14). ‘
Consider the metal—insulator junction shown in Fig. 6.4 on page 190 . Solve Schrod-
inger’s equation in each region (metal and insulator), and derive tunneling and reflec-
tion probabilities analogous to (6.15)—(6.16) for this structure. k
Consider a metal-insulator—metal junction, as shown in Fig. 6.7 on page 193, except
assume two different Fermi levels.

(a) Draw the expected band diagram upon first bringing the metals into close
proximity.

10.

11.

12.

13.

14.

15.

16.
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(b) Because of the difference in Fermi levels, tunneling will occur (assuming that the
barrier between the metals is thin), and will continue until a sufficient voltage is
built up across the junction, equalizing the Fermi levels. This internal voltage is
called the built-in voltage. Draw the energy band diagram showing the built-in
voltage in this case.

. Draw the potential energy profile for a metal-vacuum-—metal structure when a voltage

Vo is applied across the vacuum region.

. Determine the tunneling probability for an Al-SiO;-Al system, if the SiO, width is

I nm and the electron energy is 3.5 eV. Repeat for an SiO, width of 2 nm, 5 nm,

and 10 nm.

Use the WKB tunneling approximation (6.30) to determine the tunneling probability

for the rectangular barrier depicted in Fig. 6.2 on page 185.

Plot the tunneling probability versus electron energy for an electron impinging on a

triangular potential barrier (Fig. 6.9, page 196 ), where e¢ = 3 eV and the electric

field is 10° V/m. Assume that the energy difference (E — Er) ranges from 0 to

3eV. ,

Consider the double barrier structure depicted in Fig. 6.22 on page 206.

(a) Plot the tunneling probability versus electron energy for an electron impinging
on the double barrier structure. The height of each barrier is 0.5 eV, each barrier
has width ¢ = 2 nm, and the well has width 4 nm. Assume that the energy of
the incident electron ranges from 0.1 eV.to 3 eV, and that the effective mass of
the electron is 0.067m, in all regions.

(b) Verify that the first peak of the plot occurs at an energy approximately given by
the first discrete bound state energy of the finite-height, infinitely-thick-walled
well formed by the two barriers. Use (4.83) adopted to this geometry, i.e.,

ko tan (kL /2) = kq, (6.44)

where L = 4 nm and

J 2m*E 2m¥ (Vo ~ E)
k= £ k= ) —F 6.45
b=y— h=y P (6.45)

Derive the tunneling probability (6.38) for the double barrier junction depicted in
Fig. 6.22 on page 206.

Research how tunneling is used in flash memories, and describe one such commercial
flash memory product.

Research how field emission is used in displays, and summarize the state of display
technology based on field emission.

Explain how a negative resistance device can be used to make an oscillator.




