Digital Processing of

Continuous-Time Signals
 Digital processing of a continuous-time
signal involves the following basic steps:

(1) Conversion of the continuous-time
signal into a discrete-time signal,

(2) Processing of the discrete-time signal,

(3) Conversion of the processed discrete-
time signal back into a continuous-time
signal
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Digital Processing of
Continuous-Time Signals

Conversion of a continuous-time signal into
digital form is carried out by an analog-to-
digital (A/D) converter

The reverse operation of converting a
digital signal into a continuous-time signal
IS performed by adigital-to-analog (D/A)
converter
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Digital Processing of

Continuous-Time Signals

o Sincethe A/D conversion takes afinite
amount of time, a sample-and-hold (S'H)
circult Is used to ensure that the analog
signal at the input of the A/D converter
remains constant in amplitude until the
conversion Is complete to minimize the
error in its representation

3
Copyright © 2001, S. K. Mitra



Digital Processing of
Continuos-Time Signals

e To prevent aliasing, an analog anti-aliasing
filter 1semployed before the S/H circuit
e To smooth the output signal of the D/A

converter, which has a staircase-like

waveform, an analog reconstruction filter
IS used

4
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Digital Processing of
Continuous-Time Signals

Complete block-diagram

Anti-
—» dliasing
filter

—>

S/H

—»

A/D

—»

Digital
Processor

—»

D/A

—>

Reconstruction |
filter

e 3Since both the anti-aliasing filter and the
reconstruction filter are analog lowpass
filters, we review first the theory behind the

design of such filters

o Also, the most widely used |IR digital filter
design method is based on the conversion of

5

an analog lowpass prototype
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Sampling of Continuous-Time
Signals

o Asindicated earlier, discrete-time signalsin
many applications are generated by
sampling continuous-time signals

 \We have seen earlier that 1dentical discrete-
time signals may result from the sampling
of more than one distinct continuous-time
function
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Sampling of Continuous-Time
Signals

 |nfact, there exists an infinite number of
continuous-time signals, which when
sampled lead to the same discrete-time
signal

 However, under certain conditions, it Is
possible to relate a unigue continuous-time
sighal to agiven discrete-time signals
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Sampling of Continuous-Time

Signals

* |f these conditions hold, then it Is possible
to recover the original continuous-time
signal from its sampled values

* \WWe next develop this correspondence and
the associated conditions
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Effect of Sampling in the
Frequency Dormain

» Let g,(t) beacontinuous-time signal that is
sampled uniformly at t = nT, generating the
sequence g[n] where

gln]=g4(nT), —cwo<n<w
with T being the sampling period
 Thereciprocal of T iscalled the sampling
frequency Fr, I.e,
-1 |
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Effect of Sampling in the
Frequency Domain

* Now, the frequency-domain representation of
g, (t) is given by its continuos-time Fourier
transform (CTFT):

Ga(jQ)=[" gat)e Mt
* The frequency-domain representation of g[n|
IS given by Its discrete-time Fourier transform

(DTFT):
G(el®)= 1 glneler

10 10
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Effect of Sampling in the
Frequency Dormain

* To establish the relation between G, (jQ)
and G(e'®), we treat the sampling operation
mathematically as a multiplication of g,(t)
by aperiodic impulsetrain p(t):

p(t)= 2 6(t—nT)

N=—0o0

g, (t) H?—» g,(t)
p(t) p

11
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Effect of Sampling in the
Frequency Dormain

* p(t) consists of atrain of ideal Impulses

with aperiod T as shown below
p(r)
+ Tl

AT

> [
2T-T 0 T 2T

« The multiplication operation yields an
Impulse train:

0p(t) =ga(t) p(t) = Zga(nT)S(t nT)

12 N=—o0
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Effect of Sampling in the
Frequency Dormain

* Op (t) is a continuous-time signal consisting
of atrain of uniformly spaced impulses with
the impulse at t = nT weighted by the
sampled valueg, (nT) of g,(t) at that instant

HH-I:r]I Ep{;}

...... T {guﬂ’}
N
ﬂ ‘\\‘H“*ahh_____ﬂ,a—"'-nu o .”:;l“ﬁlusl”.l’”L'.“

£4(4T)
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Effect of Sampling in the
Frequency Domain

* Thereare two different forms of G (J€2):

 Oneformisgiven by the weighted sum of
the CTFTsof d(t—nT):

Gp(jQ) =Y ga(nT)e 1M

e To derive the second form, we note that p(t)

can be expressed as a Fourier series:
_ 1y j(27IT)KT _ 1 <00 jQrkt
p(t)—TZk:_ooe = €

T“k=—w
WhereQT :272'/T

14 14
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Effect of Sampling in the
Frequency Dormain

» Theimpulsetrain g,(t) therefore can be
expressed as

Op(t) = (% ZejQTkt)' Ja(l)

K=—o0

 From the frequency-shifting property of the
CTFT, the CTFT of el¥t®g_(t) is given by

Gy(i(Q-kQr))

15 15
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Effect of Sampling in the
Frequency Dormain

e Hence, an alternative form of the CTFT of
gp(t) Isgiven by

Gp(JQ) == ZG (1(Q-kar))

k——oo
* Therefore, G, (j€2) Isaperiodic function of
Q) consisting of asum of shifted and scaled

replicas of G,(jQ) , shifted by Integer
multiples of O+ and scaled by =

16
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Effect of Sampling in the
Frequency Dormain

e Theterm on the RHS of the previous
equation for k = 0 isthe baseband portion
of G,(J€2), and each of the remaning terms

are the frequency translated portions of
Gp(J€2)

* The frequency range

_QT<Q<QT
2 ~ 7T 2
 |scalled the baseband or Nyquist band

17 17
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Effect of Sampling in the
Frequency Domain

e Assume g,(t) isaband-limited signal with a
CTFT G,(]€Q) as shown below

"J}L\ Q
e The spectrum P("jQ) df p(t) having a

sampling period T =g22’; is indicated below

=5 0 Q, 20, 3Q, -
18 18
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Effect of Sampling in the
Frequency Domain

* Two possible spectraof G ( J€2) are shown
below

19 19
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Effect of Sampling in the
Frequency Dormain

 |tisevident from the top figure on the
previous slide that iIf Q1 > 20, thereisno
overlap between the shifted replicas of G, (€2)
generating G, (<)

e On the other hand, as indicated by the figure
on the bottom, If Q7 <2Q_., thereisan
overlap of the spectra of the shifted replicas
of G5 (J€2) generating G, (1)

20
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Effect of Sampling in the
Frequency Dormain

mm) If Or >2Q,, g,(t)can be
recovered exactly from g, (t) by passing it
through an ideal lowpass filter H, (J€2) with
agan T and a cutoff frequency Q. greater
than Q,and less than Q1 — Q,as shown

below
:JP A
g, (1) —'(?—*Hr{jﬂ}—* 8,0
21
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Effect of Sampling in the

Frequency Domain

* The gpectra of the filter and pertinent
signals are shown below

H (<)
r
ﬂm = ﬂr = [ﬂ'.l" - ﬂm:l
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Effect of Sampling in the
Frequency Dormain

e Ontheother hand, iIf Q7 <2Q,,, dueto the
overlap of the shifted replicas of G5(]€2),
the spectrum G, ( J€2) cannot be separated by
filtering to recover G, (]Q2) because of the
distortion caused by a part of the replicas
Immediately outside the baseband folded
back or aliased into the baseband

23
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Effect of Sampling in the
Frequency Dormain

Sampling theorem - Let g,(t) be a band-
limited signal with CTFT G, (j€Q2) =0for
Q>0

e Then g4(t) isuniquely determined by its
samplesg,(NT), —o<n< oo If

Qr >2Q.
where Q+ =2n/T

24 24
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Effect of Sampling in the
Frequency Dormain

* Thecondition Q; >2Q s often referred to
as the Nyquist Condition

e Thefrequency **T isusualy referred to as
the folding frequency

25 25
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Effect of Sampling in the
Frequency Dormain

e Given{g,(nT)}, we can recover exactly g, (t)
by generating an impulse train
Op(t) =2, 9a(NT)3(t —NT)
and then passing it through an ideal |lowpass
filter H, (J€2) with again T and a cutoff
frequency Q. satisfying
Q<Q.<(Q Q)

26
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Effect of Sampling in the
Frequency Dormain

» The highest frequency Q2,,contained in g,(t)
Is usually called the Nyquist freguency
since it determines the minimum sampling
frequency Q =2Q, that must be used to
fully recover g,(t) from its sampled version

* Thefrequency 2Q), Is called the Nyquist
rate

27 27
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Effect of Sampling in the

Frequency Domain
 Oversampling - The sampling frequency is
nigher than the Nyquist rate
 Undersampling - The sampling frequency Is
ower than the Nyquist rate
* Critical sampling - The sampling frequency

IS equal to the Nyquist rate

* Note: A pure sinusoid may not be
recoverable from its critically sampled

- verson .
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Effect of Sampling in the
Frequency Dormain

 Indigital telephony, a 3.4 kHz signal
bandwidth is acceptable for telephone
conversation

 Here, asampling rate of 8 kHz, which s
greater than twice the signal bandwidth, Is
used

29 29
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Effect of Sampling in the
Frequency Dormain

 |n high-quality analog music signal
processing, a bandwidth of 20 kHz has been
determined to preserve the fidel ity

* Hence, in compact disc (CD) music
systems, a sampling rate of 44.1 kHz, which
Is slightly higher than twice the signal
bandwidth, Is used

30
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Effect of Sampling in the
Frequency Dormain

e Example - Consider the three continuous-

time sinusoidal signals:
0;(t) = cos(6mnt)
g-(t) = cos(14nt)
g;(t) = cos(26mt)
e Thelr corresponding CTFTs are:
Gy(J€Q2) = m[d(Q2—67) + 0(€2 + 67)]
G, (JQ) = n[6(Q —147) + 6(Q2 +141)]

G3(]Q) = [ 6(Q2 —26m) + 5(Q2 + 267)]

31 31
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Effect of Sampling in the
Frequency Domain

e These three transforms are plotted below

32
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Effect of Sampling in the
Frequency Dormain

e These continuous-time sighals sampled at a
rate of T =0.1 sec, I.e.,, with asampling
frequency Q1 = 20r rad/sec

* The sampling process generates the
continuous-time impulse trains, gy »(t),
gZp(t)1 and g3p(t)

e Thelr corresponding CTFTs are given by

Gp(iQ) =103, G/(j(Q-kQr)), 1</<3

33 33
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Effect of Sampling in the

Frequency Domain
e Plotsof the 3 CTFTS are shown below
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Effect of Sampling in the
Frequency Domain

hese figures also indicate by dotted lines
the frequency response of an ideal lowpass
filter with a cutoff at QQ, = Q1 /2=10n and
aganT=0.1

The CTFTs of the lowpass filter output are
also shown in these three figures

In the case of g, (t), the sampling rate
satisfies the Nyquist condition, hence no
allasing

35
Copyright © 2001, S. K. Mitra



36

Effect of Sampling in the
Frequency Dormain

 Moreover, the reconstructed output IS
precisely the original continuous-time
signal

 |nthe other two cases, the sampling rate
does not satisfy the Nyquist condition,
resulting in aliasing and the filter outputs
are all equal to cos(6rmt)

36
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Effect of Sampling in the

Frequency

Domain

Note: In the figure below, the Impulse

appearing at 2 =6r int
frequency passband of t

ne positive
ne filter results from

the aliasing of the Iimpu
Q) =-14r

inG,(jQ) at

Likewise, the impulse appearing at €2 = 6w
In the positive frequency passband of the

filter results from the al
In Gy(j) at Q=26n

asing of the impulse

37
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Effect

of Sampling in the

Frequency Dormain
 We now derive the relation between the

DTFT of g|

e Tothiseno
G(e!
with

n] and the CTFT of gp(t)
we compare

°)= X glnle ion

Gp(jQ) =" ga(nT)e 1T
and make use of g[n] = g,(NT), —o<nN< o

38
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Effect of Sampling in the
Frequency Dormain

e Observation: We have
G(el®) =Gy (jQ)
or, equivalently,
Q) = J
Gp(i)=G(el®) -
e From the above observation and

Gp(jsz)=$k_§ea(j(ﬂ—kﬂﬂ)

Q=/T

39 39
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Effect of Sampling in the
Frequency Dormain
we arrive at the desired result given by

Ge)=1 > G, (jQ - jkQr)

k——OO Q=n/T
=%kz Ga(j 7~ ikQr)
=1 3 Gy(jo- 2z
k=—00

40 40
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Effect of Sampling in the
Frequency Domain

* Therelation derived on the previous slide
can be alternately expressed as

G =1xr ,G,(jQ- jkQr)
e From |

G(el®) =G, (jQ)

or from |

) i

Gp(i)=G(e) |
it follows that G(e!®)is obtained from Gy()€2)
by applying the mappingQ=$

Q=/T

41 41
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Effect of Sampling in the
Frequency Dormain

e Now, theCTF

Gy (J€2) Isaperiodic

function of Q with aperiod Q1 =2r/T

« Because of the mapping, the DTFT G(e!®)
Is aperiodic function of m with a period 2r

42
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Recovery of the Analog Signal

* \We now derive the expression for the output
04(t) of the ideal lowpass reconstruction
filter H, (J€) asafunction of the samples

g[n]

e The impulse response h,(t) of the lowpass
reconstruction filter is obtained by taking
theinverse DTFT of H, (JQ):

.| T, Q<Q,
Hr(JQ)—{O, Q>Q.

43 43
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Recovery of the Analog Signal

hus, the impulse response is given by

he(t) =1 [7 H, (jQ)ei®tdO = ﬁ;cejmdﬂ

_sm(Q t)
Qrt/2

— w0 <L

e Theinput to the lowpass filter isthe

Impulse train g(t):

gp(t) ="/, aln]&(t—nT)
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Recovery of the Analog Signal

* Therefore, the output g, (t) of the ideal
lowpass filter Is given by:
ga(t) =hr () ® gp() = X gln]h, (t—nT)
N=—0o0
e Substituting h, (t) =sin(Q.t) /(Qyt/2) inthe
above and assuming for smplicity
Q. =Q7/2=7/T |, we get
A - sin[w(t—nT)/T]
t) = N
s Ya®= 2 o= o .

N=—0o0 Copyright © 2001, S. K. Mitra




Recovery of the Analog Signal

* Theideal bandlimited interpolation process
IS Illustrated below

46 46
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Recovery of the Analog Signal

e |t can be shown that when Q.=Q+/21In
h (t):sin(QCt)
r Qrt/2
h.(0)=1and h,(nT)=0forn=0

e Asaresult, from
A o sin[n(t—nT)/T]

we ?)Z;te)r\:ezn:_oo an renni
0a(rT)=0[r] =9ga(rT)

for al integer values of r in the range

47 —0 <[ <0 47
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Recovery of the Analog Signal

 Therelation
Ga(rT) = 0lr]=ga(rT)
holds whether or not the condition of the
sampling theorem is satisfied
» However, g,(rT) = g,(rT) for al values of
t only If the sasmpling frequency Qt satisfies
the condition of the sampling theorem

48 48
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Implication of the Sampling
Process

e Consider again the three continuous-time
signals: g, (t) = cos(6nt) , g-(t) = cos(14nt) ,
and gs(t) = cos(26mt)

* The plot of the CTFT Gp( J€2) of the
sampled version gy (t) of g;(t) is shown
below

o 20n “Q_ -6n 6n G2 20n
49 49
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Implication of the Sampling
Process

 Fromtheplot, it Is apparent that we can
recover any of Its frequency-translated
versions cog (20k + 6)rtt] outside the
baseband by passing g,,(t) through an ideal
analog bandpass filter with a passband
centered at Q=(20k+06)n

50
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Implication of the Sampling
Process

e For example, to recover the signal cos(34rt),
It will be necessary to employ a bandpass
filter with afrequency response

.y [0, (B4-A)n<|Q<(34+A)r
H: (19) _{ 0, otherwise

where A 1s a small number

51
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Implication of the Sampling
Process

* Likewise, we can recover the aliased
baseband component cos(6rt) from the
sampled version of either g,y (t)or gap(t)
by passing it through an ideal lowpass filter
with afreguency response:

. 01 (6-A)r<Q<(6+A)m

H, (1€) _{ 0, otherwise

52
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Implication of the Sampling

Process

here is no aliasing distortion unless the
original continuous-time signal also
contains the component cos(6mt)

Similarly, from either gop(t) or ggp(t) we
can recover any one of the frequency-
translated versions, including the parent
continuous-time signal g,(t) or gs(t) asthe
case may be, by employing suitable filters

53
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Sampling of Bandpass Signals

* The conditions developed earlier for the
unique representation of a continuous-time
signal by the discrete-time signal obtained
by uniform sampling assumed that the
continuous-time signal is bandlimited in the

frequency range from dc to some freguency
Qm

 Such a continuous-time signal is commonly

referred to as alowpass signal

A 54
Copyright © 2001, S. K. Mitra



95

Sampling of Bandpass Signals

* There are applications where the continuous-
time signal 1s bandlimited to a higher
frequency rangeQ; </Q<Qy withQ, >0

e Such asignal isusually referred to as the
bandpass signal

e To prevent aliasing a bandpass signal can of
course be sampled at arate greater than
twice the highest frequency, 1.e. by ensuring

Q1 >2Q

55
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Sampling of Bandpass Signals

 However, dueto the bandpass spectrum of
the continuous-time signal, the spectrum of
the discrete-time signal obtained by sampling
will have spectral gaps with no signal
components present in these gaps

 Moreover, If Qy Isvery large, the sampling
rate also has to be very large which may not
be practical in some situations

56
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Sampling of Bandpass Signals

* A more practical approach isto use under-
sampling

o Let AQ=Q —Q, define the bandwidth of
the bandpass signal

« Assume first that the highest frequency Q,,
contained in the signal is an integer multiple
of the bandwidth, i.e.,

Qy =M (AQ)

57
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Sampling of Bandpass Signals

 We choose the sampling frequency Q- to
satisfy the condition

Q7 = 2(AQ) =

which is smaller than ZQH the Nyquist
rate

e Substitute the above expression for Ot In
Gp(1Q) =2 ZG (i(Q-kar))

58 k_—oo 58
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Sampling of Bandpass Signals

e Thisleadsto
Gp(iQ)=13¢_ _ GaliQ- j2k(AQ))
o Asbefore, Gp(j€2) consists of a sum of G5( JQ2)

aincC

replicas of G,(jQ2) shifted by integer

mu

tiples of twice the bandwidth AQ and

scaled by UT

e The amount of shift for each value of k
ensures that there will be no overlap
between all shifted replicasmm) no aliasing
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Sampling of Bandpass Signals
* Figure below illustrate the idea behind

Ga(j)
0, -0, 0 o, o, 2
Gy(1€Q)
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Sampling of Bandpass Signals

» Ascan be seen, g,(t) can be recovered from
O,(t) by passing it through an ideal
bandpass filter with a passband given by
Q <Q<Qy andaganof T

* Note: Any of thereplicasin the lower
freguency bands can be retained by passing
Jp (t) through bandpass filters with
passhands Q; —k(AQ) < Q <Qp —k(AQ),
1<k <M -1 providing atrandlation to

s lower frequency ranges

61
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