Polyphase Decomposition

he Decomposition

e Consider an arbitrary sequence {x[n]} with
a z-transform X(z) given by

X(2)=Y " __Xnz"
* \We can rewrite X(2) as
X(2)=24lo 2 X (2")
where
Xe@=Sm %[z " =37 xMn+k]z "

0<k<M-1
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Polyphase Decomposition

* The subsequences{ x[n]} are called the
polyphase components of the parent
sequence { X[ n]}

* Thefunctions X, (z), given by the

z-transforms of {x,[n]}, are called the
polyphase components of X(2)
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Polyphase Decomposition

e The relation between the subsequences{ X, [n]}
and the original sequence {Xx|n]} are given
by
X [n]=XMn+K], 0<k<M -1

e |n matrix form we can write

Xo(2M)
X(2)=p z1 - Z—(M—l)] Xl_(Z'V')

_><|\/|—:1(ZNI )
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Polyphase Decomposition

o A multirate structural interpretation of the
polyphase decomposition is given below

xln]

—+ X, [n] = x[Mn]

— xl[n] =x[Mn+1]

—— 1:2[;1] = x{Mn+ 2]

I xM_l[n]= A Mn+M-1]
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Polyphase Decomposition

* The polyphase decomposition of an FIR
transfer function can be carried out by
Inspection

* For example, consider alength-9 FIR
transfer function:

H(2) = ih[n] z"
n=0

Copyright © 2001, S. K. Mitra
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Polyphase Decomposition

* |ts 4-branch polyphase decomposition is
given by
H(2) = Eo(z) + 2 1E(2%) + 27 %E,(2%) + 2 3E5(2%)

where

Eo(2) = h[0] + h[4]z* + h[8] 22 A ol
E,(2) = h[1] + h[5] 1 il—' Eych
E>(2)=h[2]+h[6 7+ il—’ Ey(ch
Es(2)=h[3]+h[7]z" 3l oy
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Polyphase Decomposition

* The polyphase decomposition of an | IR
transfer function H(z) = P(2)/D(2) is not that
straight forward

 Oneway to arrive at an M-branch polyphase
decomposition of H(z) ISto expressit in the
form P'(2)/D'(z" ) by multiplying P(2) and
D(2) with an appropriately chosen
polynomial and then apply an M-branch
polyphase decomposition to P'(2)

Copyright © 2001, S. K. Mitra



Polyphase Decomposition

 Example - Consider

H (Z) _ 1—22
_ 1+3z71 o
e To obtain a 2-band polyphase decomposition

we rewrite H(z) as
_2-1(1-371) 1-571.672 2 g1
H(2) = (1 22_1)(1 32_1) _1-52z +_622 _ 1+62_2 N 52_2
(1+3z)(1-3z) 1-9z 1-9z 1-9z
 Therefore,

H(2) = Eg(Z%) + Z 'Ey(2°)

1+6z_1 —9
Z) = E(2) =
EO( ) L 1( ) 1951

Copyright © 2001, S. K. Mitra
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Polyphase Decomposition

* Note: The above approach increases the
overall order and complexity of H(2)

 However, when used in certain multirate
structures, the approach may result in a
more computationally efficient structure

o An alternative more attractive approach is
discussed in the following example
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Polyphase Decomposition

e Example - Consider the transfer function of
a 5-th order Butterworth lowpass filter with
a 3-dB cutoff frequency at 0.5m:
-1\5
H(2) = 0.052786i1§1+z ) .
1+0.633436854z “+0.05572817

 |tiseasy to show that H(z) can be expressed

as

105573+2 2 _1( 0.527 ~2

H(z):l 0.105573+7 : +21 0.52786+ 7 :
2|\ 1+0.10557372 1+0.527867"

Copyright © 2001, S. K. Mitra
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Polyphase Decomposition

* Therefore H(z) can be expressed as
H(2) = Eo(2%) + 7 'E(2°)
where

Eq(2) = ;( 0.105573+ 7" j

1+0.105573z 1

1
£ (2) = ;( 0.52786+ 2 )

1+0.527867+

11
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Polyphase Decomposition

* Note: In the above polyphase decomposition,
branch transfer functions E; (z) are stable
allpass functions

* Moreover, the decomposition has not
Increased the order of the overall transfer
function H(2)

12 . .
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FIR Filter Structures Based on
Polyphase Decomposition

* We shall demonstrate later that a parallél
realization of an FIR transfer function H(2)
based on the polyphase decomposition can

often result in computationally efficient
multirate structures

o Consider the M-branch Type | polyphase
decomposition of H(2):

M-1__
H(2)=3, 20 7 “E(ZV)
13 Copyright © 2001, S. K. Mitra



FIR Filter Structures Based on
Polyphase Decomposition

o A direct realization of H(z) based on the
Type | polyphase decomposition is shown

below

14

r[M]—]’—r EoM) —@— yln]

1

| B %
—1

! ’ EE(ZM) H?
l !
z ! J

> EM_l(EM)
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FIR Filter Structures Based on
Polyphase Decomposition

e The transpose of the

ype | polyphase FIR

filter structure 1sindicated below

x[n] > Eﬂ(ZM)

—v(?—v y[n]
—1
g

> El(ZM)

—

Z_l

. > EE(ZM)

B

E_l

> EM_ 1_(EM)

-t

15
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FIR Filter Structures Based on
Polyphase Decomposition

o An aternative representation of the
transpose structure shown on the previous
slide Is obtained using the notation

R(zM)=Ey_ 1 ,(zM), 0</<M -1
e Substituting the above notation in the Type

| polyphase decomposition we arrive at the
Type Il polyphase decomposition:

H(2) =25 7 M IR (M)

Copyright © 2001, S. K. Mitra
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FIR Filter Structures Based on
Polyphase Decomposition

o A direct realization of H(z) based on the
Type Il polyphase decomposition is shown

below

x[n]

17

" Ro(zM)

*» R 1(ZM)

— R,(M)

> RM_l(ZM)

—1
4
—bé—b y[n]
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Computationally Efficient
Decimators

o Consider first the single-stage factor-of-M
decimator structure shown below

v[n]

x[n]— H@ —| M |~ YNl

 Weredlizethe lowpass filter H(z) using the
ype | polyphase structure as shown on the

next dide

18 . .
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Computationally Efficient
Decimators

« Using the cascade equivalence #1 we arrive
at the computationally efficient decimator
structure shown below on the right

ir ir FpiM T FIM F.IM
l \’
X[N] ——— Eqfiz* I y[n] X[N] ———iM[— Eye yin]
=1 /L V[ n] i 1
E iz ‘ |Ml—— E 2
=1 =1
Eo(zM) — IM— E.(2

J_‘ : 5 i . 5
z! . J 7! . J
l_" Epp_y(zM) I_'l” * Ey (2

Decimator structure based on Type | polyphase decomposition

19 . .
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Computationally Efficient
Decimators

o Toillustrate the computational efficiency of

the modified decimator structure, assume
H(2) to be alength-N structure and the input
sampling periodtobe T =1

* Now the decimator output y[n] in the
original structure is obtained by down-

sampling the filter output v[n] by afactor of
M

20 . .
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Computationally Efficient
Decimators

* |t Isthus necessary to compute v[n] at
n=...—2M,-M,0,M ,2M,...
e Computational reguirements are therefore N
multiplications and (N —1) additions per
output sample being computed

 However, asnincreases, stored signalsin
the delay registers change

21 _ _
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Computationally Efficient
Decimators

* Hence, all computations need to be
completed in one sampling period, and for
the following (M —1) sampling periods the
arithmetic units remain idle

* The modified decimator structure also
requires N multiplications and (N —1)
additions per output sample being computed

Copyright © 2001, S. K. Mitra



Computationally Efficient
Decimators and Interpolators

 However, here the arithmetic units are
operative at all instants of the output
sampling period which is M times that of
the input sampling period

o Similar savings are also obtained in the case
of the interpolator structure developed using
the polyphase decomposition

23 . .
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Computationally Efficient
Interpolators

* Figures below show the computationally
efficient interpolator structures

Fr Fr  LF F, ol LF,
\} NN 2 \A l

> EU':Z) » T L —»(?—p M Rpl2) > TL 1

! !

| B oltr Héa | R L —~<§

! 7!

| EQ =TL—’<% — R0 [Tz}

¥

Z_l . Z_l

o B, @ ot o R [ L—o—

|nterpolator based on |nterpolator based on
Type | polyphase decomposition  Type Il polyphase decomposition

Copyright © 2001, S. K. Mitra
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Computationally Efficient
Decimators and Interpolators

 More efficient interpolator and decimator
structures can be realized by exploiting the
symmetry of filter coefficients in the case of
linear-phase filters H(z)

e Consider for example the realization of a
factor-of-3 (M = 3) decimator using a
length-12 Type 1 linear-phase FIR lowpass
filter

25 . .
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Computationally Efficient

Decimators and Interpolators

* The corresponding transfer function is
H(2) = NO] + N[zt +h[2]z72 + h[3]z> + h[4]z* + h[5] >

+h5]z° +h41z " + 3z %+ h2]z + 1)z '° + hjo]z

* A conventional polyphase decomposition of

H(z) yields the fo

Eo(2) = h0] + h3

lowing subfilters:
z1+h5)lz2+n2]z3

E,(2) = h[1] + h[4]z X+ 4]z 2 + W1z 3
E,(2) = N[2] + h[5]z L+ {3z 2 + h[0] 3

26
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Computationally Efficient
Decimators and Interpolators

» Notethat E;(2) still hasasymmetric
Impulse response, whereas E;(z) isthe
mirror image of E,(2)

e These relations can be made use of In
developing a computationally efficient
realization using only 6 multipliersand 11
two-input adders as shown on the next slide
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Computationally Efficient

Decimators and Interpolators

 Factor-of-3 decimator with alinear-phase
decimation filter

»(D :I\h[S]
41—’43 71 J o 1 T M
z ! } o,
=) =
7z < < "2
»l3 :Z—l :Z—l 1 M o
e

28 . .
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A Useful ldentity

* The cascade multirate structure shown
below appears in a number of applications

X[n] —

L

>

H(2)

>

LL

— y[N]

o Equivalent time-invariant digital filter
obtained by expressing H(z) in its L-term
Type | polyphase form 35z %E(z")

IS shown below

Xn —

29

Ey(2)

— y[n]
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Arbitrary-Rate Sampling Rate
Converter

he estimation of a discrete-time signal
value at an arbitrary time instant between a
consecutive pair of known samples can be
solved by using some type of interpolation

In this approach an approximating
continuous-time signal is formed from a set
of known consecutive samples of the given
discrete-time signal

Copyright © 2001, S. K. Mitra
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Arbitrary-Rate Sampling Rate
Converter

* The value of the approximating continuous-

time signal isthen evaluated at the desired
time Instant

o Thisinterpolation process can be directly
Implemented by designing adigital
Interpolation filter

%, 0
PN vy € AU, G

1
F = Fr=—
T T T T'
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ldeal Sampling Rate
Converter

 In principle, asampling rate conversion by
an arbitrary conversion factor can be
Implemented as follows

e Theinput digital signal is passed through an
Ideal analog reconstruction lowpass filter
whose output Is resampled at the desired
output rate as indicated below

%, (0
i) o——4 G, (9 bl o—s i)
FT =E_‘ FT =?r
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ldeal Sampling Rate
Converter

 Let the impulse response of the analog
lowpass filter is denoted by 94 (t)

* Then the output of the filter isgiven by
Ra®) =37 X[(1ga(t—(T)
o |If theanalog filter is chosen to bandlimit its
output to thefrequency range Fy < /2,
its output X, (t) can then be resampled at the
rate Fr

33 _ _
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ldeal Sampling Rate

Converter

* Since the impulse response d4(t) of an ideal
lowpass analog filter is of infinite duration
and the samplesg,(NT'—¢T) haveto be
computed at each sampling instant,
Implementation of the ideal bandlimited
Interpolation algorithm in exact form is not
practical

* Thus, an approximation is employed in
practice

Copyright © 2001, S. K. Mitra
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ldeal Sampling Rate
Converter

* Problem statement: Given N, + N, +1 input
signal samples, X[K], k= — Njy,...,N,, obtained
by sampling an analog signal x5 (t)at t =t
=1to + KT, , determine the sample value
X, (tg + KTiy) = Y] at timeinstantt'=ty + KT,
where —=N; <a <N,

e Figure on the next dlide illustrates the
Interpolation process by an arbitrary factor

Copyright © 2001, S. K. Mitra



ldeal Sampling Rate

1)
N [ ,----*"E -------- x[n+N>-1]
n—N y[n .
' . "l .. gt
SO Lt T B
- t
I_Nl _q In T 1 fNE_l tNg
i
oT,

» We describe next a commonly employed
Interpolation algorithm based on afinite
weighted sum of Input samples

36 . .
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Lagrange Interpolation
Algorithm

* Here, apolynomial approximation X, (t) to
X, (t) is defined as

N2
%)= Y R(OXN+k]

k=— Nl
where R (t) are the Lagrange polynomials
given by
A -
R®) =11 , —Np<k<N;

r=nNy \tk — L
37 /#K
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Lagrange Interpolation
Algorithm

 Example - Design afractional-rate
Interpolator with an interpolation factor of
3/2 using a 3rd-order polynomial
approximation with Ny =2and N, =1
e The output y[n] of the interpolator isthus
computed using
yln] =P (a)Xn—-2]+ P ()X n-1]
+ Ry (o)X n]+ R (a)x{n+1]

38 _ _
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Lagrange Interpolation
Algorithm

* Here, the Lagrange polynomials are given

by
P_Z(OL) (oc+1)oc6(oc—1) _( o -I-OL)
—(oc + o —20)

(oc+2)oc(oc—1)
P_q(a) =
NOE (“+2)(0_‘;1)(°‘ P=- (0¥ +202-a-2)

F?]_(OC) (OH—Z)_(g-I—l)OL _( 3 i 3(12 i OL)
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Lagrange Interpolation
Algorithm

* Figure below shows the locations of the
samples of the input and the output for an
Interpolator with a conversion factor of 3/2

 Locations of the output samplesy[0], y[1],
and y[ 2] In the input sample domain are
marked with an arrow

o———o— |nput sample index
n+ n+4

n— + n
+——o———0——o——0————0o——o———o——o———0—  Output sample index
n— n— n— n n+ n+ n+ n+ n+s n+6

40 _ _
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Lagrange Interpolation
Algorithm

* From the figure on the previous dlide it can
be seen that the value of o for computation
of y[n], to be labeled a.g, IS0

o Substituting thisvalue of a in the
expressions for the Lagrange polynomial
coefficients derived earlier we get

P_o(ag) =0, P4(ag)=0
Fo(ap) =1, R(ap)=0

41 : -
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Lagrange Interpolation
Algorithm

* Thevalue of o for computation of y[n+1],
to belabeled a4, 1s2/3

o Substituting thisvalue of a in the
expressions for the Lagrange polynomial
coefficients we get

P (01y) = 0.0617 , P 4(0t;) = —0.2963
PO (Otl) =0.7407 , F?I_(Otl) = 0.4938

42 _ _
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Lagrange Interpolation
Algorithm

* Thevalue of o for computation of y[n+2],
to belabeled a5, 1S4/3

o Substituting thisvalue of a in the
expressions for the Lagrange polynomial
coefficients we get

P_2((12) =-0.1728, P_l(Otz) =0.7407
Po(()(,z) =-1.2963, F?]_(O(,2) =1.7284

43 _ _
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Lagrange Interpolation
Algorithm

o Substituting the values of the Lagrange
polynomial coefficients in the interpolator
output equation for n, n+1, and n+2, and
combining the three equations into a matrix
form we arrive at ] _

- -4 r ~ | X[n-2]
y[n] P 2(ap) Pilog) Polog) Rilao) || yrn_q)

yin+l] | =| Pa(oy) Palag) Rylag) Rlag) X[ N]
YIn+2] | [Po(ag) Palaz) Ry(az) R(az)]| xing

44 _ _
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Lagrange Interpolation
Algorithm

e The input-output relation of the

Interpolation filter can be compactly written
as _ _
oy ]| A
y[n+1] | = H XE(?r_ﬂl-
| y[n+2]_ (Pl

where H is the block coefficient matrix

45 : -
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Lagrange Interpolation

Algorithm
 For the factor-of-3/2 interpolator, we have
0 0 1 0 |

H =| 00617 -0.2963 0.7407 0.4938
-0.1728 0.7407 -1.2963 1.7284

e |t should be evident from an examination of

——  Input sample index

n— n n+
+——0——0——0———o0———o0——o——o——o——=0—  Output sample index
n-— n— n— n n+ n+ n n+ n+s n+6

that the filter coefficients to compute
y[n+3], y[n+4], and y[n+5] are again given
by the same block matrix H

46 _ _
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Lagrange Interpolation

Algorithm

« == The desired interpolation filter isa

time-varying filter

* A realization of the interpolator is given

below
(3] M31] Output

—il 2 = AT 3 _,(? :
z_l -

? 3 +1 Z

12 e y30+1]

-1 - T 3

Z
e :l - x 37 +2]= Z—l

7! y[3€+2]:T ;
I {l 2 A30+3]

Input T' ' ST
B f=...-2,-1,0,1,2,. .. > Fr

47
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Lagrange Interpolation
Algorithm

* Note: In practice, the overall system delay

will be 3 samp

e periods

e Hence, the out
appear at theti

out sample y[n] actually will
me index n+3

A realization of the factor-of-3 interpolator
In the form of atime-varying filter is shown
on the next dlide

43
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Lagrange Interpolation
Algorithm

a[n+1] Z_l z E_l Z_l Z_l
hgln] hq[n] h-[n] hs[n] haln] hs[n]
4 v w + + » Yn]

» The coefficients of the 5-th order time-
varying FIR filter have a period of 3 and are
assigned the values indicated below

49

Time hgln] hq[n] hs[n] hs[n] haln] hs[n]
3/ PI(IIU) PU(I:I.D) P_I([I.D) P_E(H'D) 0 0

37+1 0 Pi(ay) | Pylo) | Poy(o) | Poaloey) 0

3¢+2 0 0 | Pilop) | Polo) | Poy(en) | Polon)
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Lagrange Interpolation
Algorithm

o Substituting the expressions for the Lagrange
polynomials in the output equation we arrive

at

yin = o3(-1xn-2

+o2(n-1

+;x[n—1]—$x[n]+éx[n+l])
=x{n]+ > x[n+1])

+a(zXn-2]-Xn-1+2Xn]+ x{n+1)

+X(N]

50
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Lagrange Interpolation

Algorithm

o A digital filter realization of the equation on
the previous slide leads to the Farrow

structure shown below

xn]

Hy(2) Hi(2) Hy(2)

e |n the above structure
1_-1 1 .1

__1,2 1.1
Hy(2) = sZ +t5Z —5+3Z
(z)_; 1—1+22
1 1,11
- 2(2)_6 Z +5+32
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Lagrange Interpolation
Algorithm

 |Inthe Farrow structure only the value of alis
changed periodically with the remaining
digital filter structure kept unchanged

e Figures on the next slide show the input and
the output of the above interpolator for a
sinusoidal input of freguency of 0.05 Hz
sampled at a1-Hz rate
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Lagrange Interpolation
Algonthm

Input Slnusm dal Sequence I nterpolator Output

Il

,,,,,,,,,,,,,,,,,,,
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— | |
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G l l
@77 I I
C— l l
‘C T T
—O | l
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(3 +
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o o
o o
l sy l
| :‘% |
I 4'—@§+
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N o9 3
5 i
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fue= 3
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i
e

Amplitude

77777777777777777777

7777777777777777777777777777777777777777777

0 5 10 15 20 25 30 0 10 20 30 40 50
Time index n, sampling interval = 1 sec. Time index n, sampling interval = 2/3 sec.

Error Sequence
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H
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35 1 1
€-005F- 1 e i
T
75 1
O | | |
53 0 10 20 30 40 50 _ _
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Arbitrary-Rate Sampling Rate

Converter

Practical Consider ations

e A direct design of afractional-rate sampling
rate converter in most applications is not
practical

e Thisisduetotwo man reasons:

— length of the time-varying filter needed is
usually very large

— real-time computation of the corresponding
filter coefficientsis nearly impossible

A . .
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Arbitrary-Rate Sampling Rate

Converter

o Asaresult, the fractional-rate sampling rate
converter isamost realized in a hybrid form
as Indicated below for the case of an
Interpolator

xin] ——TL 1 HG) —f e —— sin]
LF

E; LF, FT'.

e Thedigital sampling rate converter can be
Implemented in a multistage form to reduce
the computational complexity

Copyright © 2001, S. K. Mitra
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