
STABILITY

In this lecture you will learn the following : 

�How to determine the stability of a system represented as a transfer function

�How to determine the stability of a system represented in state-space

�How to determine system parameters to yield stability



StabilityStability is the most important system specification. If a system is unstable, transient

response and steady-state error are moot points. 

WhatWhat is is thethe stabilitystability?? There are many definitions for stability, depending upon the kind

of system or point of view. In this section we limit ourselves to linear time invariant (LTI) 

systems. The total response of a system is the sum of the forced and natural response,

c(t) = cforced(t)  + cnatural(t)

Using these concepts, we present the following definitions of stability, instability and

marginal stability : 

A linear time invariant system is stable if the natural response approaches to zero as 

time approaches to infinity.

A linear time invariant system is unstable if the natural response grows without bound as 

time approaches to infinity.

A linear time invariant system is marginally stable if the natural response neither decays

nor grows but remains constant or oscillates as time approaches to infinity. 

An alternative and best-known definition of stability is as follows :

A A systemsystem is is stablestable ifif everyevery boundedbounded inputinput yieldsyields a a boundedbounded outputoutput..

We call this statement the bounded-input, bounded-output (BIBO) definition of stability.



How do we determine if a system is stable? If the closed loop system poles are in the

left-half of the s-plane and hence have a negative real part, the system is stable. 

Unstable systems have closed loop system transfer functions with at least one pole at 

the right half plane and/or poles of multiplicity greater than one on the imaginary axis. 

Similarly, marginally stable systems have closed loop transfer function with only

imaginary axis poles of multiplicity 1 and poles in the left half plane. As an example, the

unit step responses of a stable and an unstable system are shown in figure (a) and (b).

Figure 6.1Figure 6.1Figure 6.1Figure 6.1
Closed-loop poles and response:
a.a.a.a. stable system;
b.b.b.b. unstable system



Routh-Hurwitz Criterion

In this section we will learn a method that yields stability information without the need to

solve for closed loop system poles. The method is called the Routh-Hurwitz criterion for

stability (Routh, 1905). 

The method requires two steps : (1) Generate a data table called a Routh table and (2) 

interpret the Routh table to tell how many closed loop system poles are in the left half

plane, the right half plane, and on the imaginary axis. 

Generating a Basic Routh Table :

Look at the equivalent closed-loop transfer function shown in figure. Since we are

interested in the system poles, we focus our attention on the denominator. We first

create the Routh table shown in Table. 

Begin by labelling the rows with powers of s from the

highest power of the denominator of the closed loop

transfer function to s0. Next start with the coefficient of 

the highest power of s in the denominator and list, 

horizontally in the first row, every other coefficient. In

the second row list horizontally, starting with the

highest power of s, every coefficient that was skipped

in the first row. 



Table 6.1Table 6.1Table 6.1Table 6.1 Initial layout for Routh table

Table 6.2Table 6.2Table 6.2Table 6.2 Completed Routh table

The remaining entries are filled in as 

follows. Each entry is a negative

determinant of entries in the previous

two rows divided by the entry in the

first column directly above the

calculated row. The left-hand column

of the determinat is always the first

column of the previous two rows, and

the right-hand column is the elements

of the column above and to the right. 

The table is complete when all of the

rows are completed down to s0. Table

6.2 is the completed routh table. Let us 

look an example.



Example : Make the Routh table for the system shown in the figure. 

a.a.a.a. Feedback system b.b.b.b. equivalent closed-loop system

Solution : the first step is to find the equivalent closed loop system because we want to

test the denominator of this fnuction, not the given forward transfer function, for pole

location. Using the feedback formula, we obtain the equivalent system of figure(b). The

Routh-Hurwitz criterion will be applied to this denominator. First label the rows with

powers of s from s3 down to s0 in a vertical

column. Next form the first row of the table, 

using the coefficients of the denominator. 

Start with the coefficent of the highest power

and skip every other power of s. Now form 

the second row with the coefficients of the

denominator skipped in the previous step. 

Subsequent rows are formed with

dseterminats as shown in table. For

convenience any row of the Routh table can 

be multiplied by a positive constant without

changing the values of rows below. For

example, in the second row of table, the row

was multiplied by 1/10 . 



Interpreting the Basic Routh Table : Now that we know how to generate the Routh

table, let us see how to interpret it. Simply stated, the Routh-Hurwitz criterion declares

that thethe numbernumber of of rootsroots of of thethe polynomialpolynomial thatthat areare in in thethe rightright halfhalf planeplane is is equalequal

toto thethe numbernumber of of signsign changeschanges in in thethe firstfirst columncolumn. . If the closed loop transfer function

has all poles in the left half of the s-plane, the system is stable. Thus, a system is stable

if there are no sign changes in the first column of the Routh table. For example, the

following table has two sign changes in the first column.  The first sign changes occurs

from 1 in the s2 row to -72 in the s1 row. The second occurs from -72 in the s1 row to 103 

in the s0 row. Thus, the system is unstable since two poles exist in the right half plane. 



Routh-Hurwitz Criterion : Special Cases

Two special cases can occur : (1) The routh table sometimes will have a zero only in the

first column of a row, or (2) the routh table sometimes will have an entire row that

consists of zeros. Let us examine the first case.

Zero Only in the First Column : If the first element of a row is zero, division by zero

would be required to form the next row. To avoid this phenomenon, an epsilon, ε, is 

assigned to replace the zero in the first column. The value ε is then allowed to approach

zero from either the positive or negative side, after which the signd of the entries in the

first column can be determined. Let us look at an example. 

Example:Determine the stability of the closed loop transfer function

Solution : The Solution is shown in the table. Begin by assembling the Routh table down
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to the row where a zero appears anly in the

first column (the s3 row). Next replace the

zero by a small number, ε, and complete the

table. 



To begin the interpretation, we must firs assume a sign, positive or negative, for the

quantity ε, table(b) shows the first column of table(a) along with the resulting signs for

choices of ε positive and ε negative. If ε is chosen negative table(b) will show a sign

change from the s3 row to the s2 row, and there will be another sign change from the s2

row to the s1 row. Hence the system is unstable and has two poles in the right half

plane. Alternatively, we could choose ε negative. Table(b) would then show a sign

change from the s4 row to the s3 row. Another sign change would occur from the s3 row

to the s2 row. One result would be exactly the same as that for a positive choice for ε. 

Thus the system is unstable, with two poles in the right half plane. 

TableTableTableTable(a)(a)(a)(a)
Completed Routh table for Example

TableTableTableTable(b)   (b)   (b)   (b)   Determining signs in first column of a Routh table 
with zero as first element in a row



Entire Row is Zero : We now look at at hte second special case. Sometimes while

making a Routh table, we find that an entire row consists of zeros because there is an 

even polynomial that is a factor of the original polynomial. This case must be handled

differently from the case of a zero in only the first column of a row. Let us look at an 

example that demonstrates how to construct and interpret the Routh table when an 

entire row of zeros is present. 

Example : Determine the number of right-half-plane poles in the closed transfer function
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Solution : Start by the forming the Routh table for the denominator. At the second row,
we multiply through by 1/7 for convenience. 

We stop at the third row, since the entire row

consists of the zeros, and use the following

procedure. First we return to row immediately

above the row of zeros and form an auxiliary

polynomial, using the entries in that row as 

coefficients. The polynomial will start with the

power of s in the label column and continue

by skipping every other power of s. Thus the

polynomial formed for this example is 

P(s)=s4+6s2+8. Next we differentiate the poly-
nomial with respect to s, and obtain . Finally we use the coefficients of 

the last equation to replace the row of zeros. Again, for convenience, the third row is 

multiplied by ¼ after replacing zeros. There is no any right-half-plane pole.   WHY?
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Example : (Stability Design via Routh-Hurtwitz) : Find the range of the gain K, for the

system shown below that will cause the system to be stable, unstable and marginally

stable. Assume K > 0 .

Solution : First find the closed-loop transfer function as

Next form the Routh table : 
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Since K assumed positive, we see that all

elements in the first column are always positive

except the s1 row. This entry can be positive, zero, 

or negative, depending upon the value of K.  If

K<1386, all terms in the first column will be 

positive, and since there are no sign changes, the

system will have three poles at the left half plane

and be stable. If K>1386, the s1 term in the first

column is negative. There are two sign changes, 

indicating that the system has two right half plane poles and one left half plane pole, 

which makes the system unstable. If K=1386, we have an entire row of zeros, which

colud signify jω poles. Returning the s2 row and replacing K with 1386, we form the even

polynomial P(s)=18s2+1386. Differetiating with respect to s, we obtain dP(s)/ds=36s . 

Replacing the row of zeros with the coefficients of the last equation, we obtain the

following Routh table.



Since there are no sign changes from the even polynomial (s2 row) down

to the bottom of the table, the even polynomial has its two roots on the

jω-axis of the unit multiplicity. Since there are no sign changes above the

even polynomial, the remaining root is in the left half plane. Therefore, 

the system is marginally stable.



STABILITY IN STATE SPACE

Up to this point we have examined stability from the s-plane viewpoint. Now we look at 

stability from the perspective of state space. We know that the values of the system

poles are equal to the eigenvalues of the system matrix. We stated that the eigenvales

of matrix A were solutions of the equation det(sI-A)=0, which also yielded the poles of 

the transfer function. Let us now formally show that the eigenvalues and system poles

have the same values. 

The eigenvalues of a matrix, A, are values of λ that permit a nontrivial solution (other

than 0) for x in the equation Ax = λx. In order to solve for the values of λ, that do indeed

permit a solution for x, we rearrange the equation Ax = λx as follws : λx – Ax = 0, or

(λI-A)x =0 

Solving for x yields x = (λI-A)-10  or . The values of λ are calculated by

forcing the denominator to zero :
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This equation determines the values of λ. As you remember, we defined x as 

eigenvectors and the values of λ as the eigenvalues of the matrix A. Let us now relate

the eigenvalues of the system matrix, A, to the system poles. In Lecture 3, we derived

the equation of the system transfer function from the state equations. The system

transfer function has det(sI-A) in the denominator because of the presence of(sI-A)-1. 

Thus the characteristic equation for the system is                        . Since the last two

equations are identical, we conclude that the eigenvalues are equal to system poles.

0)det( =− AIλ



Example : For the system given below, find out how many poles are in the left half

plane, in the right half plane, and on the jω-axis. 
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Solution : First form (sI-A) : 
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Now find the det(sI-A).       det(sI-A) = s3-6s2-7s-52 

Using this polynomial, form the Routh table. 

Since there is one sign change in the

first column, the system has one right

half plane pole and two left half plane

poles. It is therefore unstable. 


