
ROOT LOCUS TECHNIQUES

In this lecture you will learn the following :

�The definition of a root locus

�How to sketch root locus

�How to use the root locus to find the poles of a closed loop system

�How to use root locus to describe the changes in transient response

�How to use root locus to design a parameter value to meet a desired transient

response



Root locus is a graphical presentation of the closed loop poles as a system parameter is 

varied. The root locus also gives a graphic presentation of a system’s stability. Before

presenting root locus, let us review two consepts that we need for the ensuing

discussion : (1) The Control System Problem,  and (2) Complex Numbers and Their

Representation as Vectors. 

The Control System Problem : Consider a system transfer function:

T(s)=KG(s)/[1+KG(s)H(s)]. The poles of T(s) are not immediately known without

factoring the denominator, and they are a function of K. Since the system transient

response and stability are dependent upon the poles of T(s), we have no knowledge of 

the system performance unless we factor the denominator for specific values of K. The

root locus will be used to give us a vivid picture of the poles of G(s) as K varies. 

Complex Numbers and Their Representation as Vectors : Any complex number, σ+jω, 

described in Cartesien coordinates can be graphically represented by a vector, as 

shown in the following figure. The complex numbers also can be described in the polar 

form with magnitude M, and angle θ, as         . If the complex number is substituting intoθ∠M

a complex function, F(s), another complex number

will result. For example, if F(s) = (s+a), then

substituting the complex number s= σ+jω yields

F(s)=(σ+a)+jω which is another complex number. F(s) 

has a zero at –a. 



Defining the Root Locus

The root locus technique can be used to analyze and design the effect of a loop gain

upon the system’s transient response and stability. The closed loop transfer function for

a system with a gain, K,  is
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From this equation,  a pole, s, exists when the characteristic polynomial in the

denominator becomes zero, or KG(s)H(s)= -1 =

Where -1 represented in polar form as                          . Alternatively, a value of s is a 

closed loop pole if |KG(s)H(s)|=1 and
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Sketching the Root Locus

The following five rules allow us to sketch the root locus using minimal calculations. 

1.) Number of the branches : Each closed loop pole moves as the gain is varied. If we

define a branch as the path that one pole traverses, thwn there will be one branch for

each closed loop pole. Our first rule defines the number of branches of the root locus: 

The number of the branches of the root locus are equal to the number of closed

loop poles.

2.) Symmetry : Physically realizable system can not have the complex coefficients

intheir transfer functions. Thus, we conclude:

The root locus is symmetrical about the real axis.



3. Real-axis segment : Using some mathematical properties of root locus plot, we get

On the real axis, for K>0 the root locus exist to the left of an odd number of real
axis, finite open loop poles and/or finite open loop zeros. 

In this figure, the real axis segments of root locus

are between -1 and -2 and between -3 and -4.

4. Starting and ending points : Consider the closed loop transfer function

As K approaches to zero, the closed loop poles approaches the poles of G(s)H(s) which

is the open loop transfer function. Similarly, as K approaches to infinity, the closed loop

poles approaches the zeros of G(s)H(s). We conclude that

The root locus begins at the finite and infinite poles of G(s)H(s) and ends at the

finite and infinite zeros of G(s)H(s).
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In this system, thr root locus begins at 

the poles at -1 and -2 and ends at 

zeros at -3 and -4. 



5. Behaviour at infinity : Every function of s has an equal number of poles and zeros. 

For example, consider the function
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This function has two poles at -2 and -3 and one zeros at -1. Because of the number of 

poles and zeros must be equal, this function has a zero at infinity. 

This rule tell us the following conclusion : 

The root locus approaches straight lines as the locus approaches the infinity. 

Further, the equation of the asymptotes is given by the real axis intercept, σa, and
angle, θa, as follows : 
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where k = 0, ± 1, ± 2 , ±3,…….,   and the angle is given in radians with respect to

the positive extension of the real axis. 

Let us demonstrate the concept with an example.



Example : Sketch the root locus for the system shown in figure.

Solution : Begin by calculating the asymptotes :
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If the values for k continued to increase, the angels would begin repeat. The number of 

lines obtained equals the difference between the number of finite poles and the number

of finite zeros.  Rule 4 states that the root locus begins at the open loop poles and ends

at the open loop zeros. For the example, there are more open loop poles than open loop

zeros. Thus, there must be zeros at infinity. The asymptotes tell us how we get to these

zeros at infinity.



This figure shows the complete root locus as well as the asymptotes that were just

calculated. Notice that we have made use of all the rules learned so far. The real axis

segment lie to the left of an odd number of poles and/or zeros. The locus starts at the

open-loop poles and ends at the open-loop zeros. For this example, there is only one

open loop finite zero and three infinite zeros. Rule 5, then, tell us that the three zeros at 

infinity are at the ends of the asymptotes. 



6. Real Axis Breakaway and Break-in Points : Numerous root loci appear to break 

away from the real axis as the system poles move from the real axis to the complex

plane. At other times the loci appear to return to the real axis as a pair of complex poles

becomes real. This is illustrated in the figure. 

Figure Figure Figure Figure 
Root locus example showing real-
axis
breakaway (-σ1) and
break-in points (σ2)

The figure shows a root locus leaving the

real axis between -1 and -2 and returning

to the real axis between +3 and +5. The

point where the locus leaves the real

axis, -σ1, is called the breakaway point, 

and the point where the locus returns to

the real axis, σ2, is called break-in 
point. At the breakaway or break-in 

point, the branches of the root locus form 

an angle of 180/n with the real axis, 

where n is the number of closed loop

poles arriving or departing from the

single breakaway or break-in point on 

the real axis. Thus for the poles shown in 

the figure the branches at the breakaway

point form 90°angles with the real axis. 



We now show how to find the breakaway and the break-in points. There is a simple

method for finding the points at which the root locus breaks away from and breaks into

real axis. The first method is to maximize and minimize the gain, K, using differential

calculus. For all points on the root locus, because of the KG(s)H(s)= -1 as we pointed

out before, K = -1 / G(s)H(s) . For points along the real axis segment of the root locus

where breakaway and break-in points could exist, s=σ. Hence along the real axis ;
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Hence if we differentiate this equation

with respect to σ and set the derivative

equal to zero, we can find the points of 

maximum and minimum gain and hence

breakaway and break-in points.

Let us demonstrate with an example.



Example : Find the breakaway and break-in points for the root locus of the figure using

differential calculus.

Solution : Using the open loop poles and

zeros, we present the open loop system

whose root locus is shown in figure as 

follows

But for all points along the root locus, 

KG(s)H(s)=-1, andalong the real axis, 

s=σ. Hence
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Solving for K, we find
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Differentiating K with respect to σ and

setting the derivative equal to zero yields
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Solving for σ, we find σ=-1.45 and 3.82, which are the breakaway and break-in points.
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7. jω-Axis Crossings : The jω axis crossing is a point on the root locus that separates

the stable operation of the system from the unstable operation. The value of ω at the

axis crossing yields the frequency of oscillation. To find jω,axis crossing, we can use the

Routh-Hurwitz criterion as follows : Forcing a row of zeros in the Routh table will yield

the gain; going back one row to the even polynomial equation and solving for the roots

yields the frequency at the imaginary axis crossing. 

Example : For the system of the following figure, find the frequency and gain, K, for

which the root locus crosses the imaginary axis. For what range of K is the system

stable?
Solution : The closed loop transfer 

function for the system is
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Simplifiying some of the entries by

multiplying any row by a constant, we

obtain the Routh array shown in table. A 

complete row of zeros yields the

possibility for imaginary axis roots. For

positive value of gain only the s1 row can 

yield a row of zeros. Thus, 

-K2-65K+720=0

and K = 9.65 . Forming the even

polnomial by using the s2 row with K=9.65



We obtain (90-K)s2 + 21K = 80.35s2+202.7 = 0

and s is found to be ±j1.59 . Thus the root locus crosses the jω axis at ±j1.59 at a gain of 

9.65. We conclude that the system is stable for 0 ≤ K ≤ 9.65 . 

8. Angles of Departure and Arrival : In order to sketch the root locus more accurately, 

we want to calculate the root locus departure angle from the complex poles and the

arrival angle to the complex zeros. If we assume a point on the root locus ε close to the

point, we assume all angles drawn from all other poles and zeros are drawn directly to

the pole that is near the point. Thus , the only unknown angle in the sum is the angle

drawn from the pole that is ε close. We can solve for this unknown angle, which is also

the angle of departure from this complex pole. Hence from the figure(a)

-θ1+θ2+θ3-θ4-θ5+θ6=(2k+1)180° or θ1=θ2+θ3-θ4-θ5+θ6-(2k+1)180°



If we assume a point on the root locus ε close to a complex zero, the sum of angles

drawn from all finite poles and zeros to this point is ann odd multiple of 180°. Except for

the xero that is ε close to the point, we can assume all angles drawn from all other poles

and zeros are drawn directly to the zero that is near the point. Thus, the only unknown

angle in the sum is the angle drawn from the zeros that is ε close. We can solve for this

unknown angle, which is also the angle of arrival to this complex zero. Hence from the

figure(b) or

-θ1+θ2+θ3-θ4-θ5+θ6=(2k+1)180°

or

θ2=θ1-θ3+θ4+θ5+θ6+(2k+1)180°



Example : Given the unity feedback system of following figure, find the angle of 

departure from the complex poles and sketch the root locus. 

Solution : Using the poles and zeros

of G(s)= (s+2)/[(s+3)(s2+2s+2)] as 

plotted in the figure, we calculate the

sum of angles drawn to a point ε

close to the complex pole,  -1+j1, in

the second quadrant. Thus,

-θ1-θ2+θ3-θ4 =

-θ1-90°+tan-1(1/1)-tan-1(1/2)=180°

From which θ1=-251.6°=108.4°. 



9. Plotting and Calibrating the Root Locus : Once we sketch the root locus, we may

want to accurately locate points on the root locus as well as find their associated gain. 

For example, we might want to know the exact coordinates of the root locus as it 

crosses the radial line representing %20 overshoot. Further, we may also want the

values of gain at this point. Consider the root locus shown in following figure.

Let us assume we want to find the

exact point at which the root locus

crosses the 0.45 damping ratio line and

gain at that point. Other figure shows

the system’s open loop poles and zeros

along with ζ=0.45 . 



If a few test points along the ζ=0.45 line are selected, we can evaluate their angular sum

and locate that point where the angles add up to an odd multiple of 180°. It is at this

point that the root locus exists. We can find the value of the gain, K, at this point. 

Selecting the point at radius 2 (r=2) on the ζ=0.45 line, we add the angles of zeros and

subtract the angles of poles, obtaining θ2-θ1-θ3-θ4-θ5=-215.5° . Since the sum is not 

equal to an odd multiple of 180°, the poiny at radius 2 is not on the root

locus.Proceeding similarly for this point at radius=1.5 , 1 , 0.747 and 0.5, we obtain the

table shown in figure. From the table we see that the point at radius 0.747 is on the root

locus, since the angles add up to -180°. The gain, K, at this point is found with

71.1==
B

DCBA
K



In summary, we search a given line for the point yielding a summation of angles (zero

angles- pole angles) equal to an odd multiple of 180°. We conclude that the point is on 

the root locus. The gain at this point is then found by multiplying the pole lengths drawn

to that point and dividing by the product of the zero lengths drawn to that point.



SUMMARY

Basic rules for the sketcing the root locus :

Number of branches : The number of branches of the root locus equals the number of 

closed loop poles.

Symmetry : The root locus is symmetrical about the real axis.

Real axis segment : On the real axis, for K>0 the root locus exists to the left of an odd

number of real-axis, finite open loop poles and/or finite open loop zeros. 

Starting and ending points : The root locus begins at the finite and the infinite poles of 

G(S)H(S) and ends at the finite and infinite zeros of G(S)H(s).

Behaviour at infinity : The root locus approaches straight lines as asymptotes as the root

locus approaches infinity. Further, the equations of the asymptotes are given by the real

axis intercept and angle in radians as follows : 
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where k = 0, ±1, ±2, ±3, ±4, ………………….



Additional Rules for Refining the Sketch

Real axis breakaway and break-in points : The root locus breaks away from the real axis

at a point where the gain is maximum and breaks into the real axis at a point where the

gain is minimum.

Calculation of jω axis crossings : The root locus crosses the jω-axis at the point where

Routh-Hurwitz or a search of the jω-axis for (2k+1)180°can be 

used to find the jω axis crossing.

Angles of departure and arrival : The root locus departs from complex open loop poles

and arrives at complex open loop zeros at angles that can be calculated as follows. 

Assume a point ε close the complex pole or zero. Add all angles drawn from all open

loop poles and zros to this point. The sum equais (2k+1)180°. The only unknown angle

is that drawn from the ε close pole or zero, since the vector drawn from all other poles

and zeros can be considered drawn to the complex pole or zero that is ε close to the

point. Solving for the unknown angle yields the angle of departure or arrival.
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Example : Sketch the root locus for the system shown in figure and find the breakaway

point on the real axis and the range of K within which the system is stable. 

Solution : The root locus of the

system is shown in following figure. 

The real axis segment is found to be 

between -2 and -4. The root locus

starts at the open loop poles and ends

at the open loop zeros. The root locus

crosses the jω-axis at ±j3.9. To find

breakaway point use the root locus

algorithm to search the real axis

between -2 and -4 for the point that

yields maximum gain. Naturally all

points will have the sum of their

angles equal to an odd multiple of 

180°. A maximum gain of 0.0248 is 

found to at the point -2.88. Therefore

the breakaway point is between the

open loop poles on the real axis at      

-2.88. Therefore the system is stable

for K between 0 and 15.


