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DESIGN via ROOT LOCUS

In this chapter you will learn the following :

�How to use the root locus to design cascade compansators to improve the steady-

state error

�How to use the root locus to design cascade compansators to improve the transient

response

�How to use the root locus to design cascade compansators to improve both the

transient response and steady-state error

�How to use the root locus to design feedback compansators to improve the transent

response

�How to realize the designed compensators physically
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The root locus allows us to choose the proper loop gain to meet a transient response

specification. As the gain varied, we move through different region of response. But we

are limited to responses that exists along to root locus. 

We compansate the system with additional poles and zeros, so that the compansated

system has a root locus that goes through the desired pole location for some value of 

gain. Compansators are also used to improve the steady state error characteristics. 

Generally, the transient response is improved with the addition of differetiation, and the

stesdy state error is improved with the addition of integration in the forward path.

Two configration of compansation are covered in this lecture : Cascade compansation

and feedback compansation as modeled in the following figures. In the cascade

compansation, the compansating

network, G1(s), is placed at the

low-power end of thew forward

path in cascade with the plant. If

feedback compansation is used, 

the compansator, H1(s) is placed

in the feedback path. Both

methods change the open loop

poles and zeros, thereby creating

a new root locus that goes

through the desired closed loop

pole location.
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Compansators that pure integration for improving steady state error or pure

differentiation for improving the transient response are defined as ideal compansators. 

Ideal compansators must be implemented with active networks, which, in the case of 

electrical networks, require the use of active amplifiers and possible additional power

sources. An advantage of ideal compansators is that steady state error is reduced to

zero. Electromechanical ideal compansators, such as tachometers, are often used to

improve transient response.

Other design tevhniques that preclude the use of active devices for compansation can 

be adopted. These compansators, which can be implemented with passive elements

such as resistors and capacitors, do not use pure integration and differentiation and are

not ideal compansators. Advantages of passive networks are that they are less

expensive and do not require additional power sources for their operations. Their

disadvantage is that the steady state error is not driven to zero in cases where ideal 

compansators yield zero error. 

Thus the choice between an active or passive compansator revolves around the cost, 

weight, desired performance, transfer function. We first discuss cascade compansator

design using the ideal compansation nad follow with cascade compansation using

compansators that are not implemented with pure integration and differentiation. 
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Improving the Steady-State error via Cascade Compensation

We will discuss two ways to improve the steady state error using cascade compansation

1) Ideal Integral Compansation (PI) : Steady-state error can be improved by placing an 

open loop pole at the origin. A compansator with a pole at the origin and a zero close to

the pole is called ideal compansator. In the following example, we demonstrate the

effect of ideal integral compansation. An open loop pole will drive the steady state error

to zero. An open loop zero will be placed very close to the open loop pole at the origin

so that the original closed loop poles on the original root locus still remain at 

approximately the same points on the compansated root locus. 

Example : Given the system of figure(a), operating a damping ratio of 0.174, show that

the addition of the integral compansator shown in figure(b) reduces the steady state

error to zero for a step input without appreciably affecting transient response. 
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Solution : We first analyze the uncompansated system and determine the location of 

dominant second order poles. Next we evaluate the uncompansated steady state error

for a unit step input. The root locus of uncompansated system is shown in following

figure. 
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Adding an integral compansator with a zero at 0.1 as shown in the figure, we obtain the

root locus as shown in other figure.
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Following figure compares the uncompansated response with ideal integral

compansated response. The step response of ideal integral compansated system

approaches unity in steady state, while uncompansated system approaches 0.892. 

Thus the ideal integral compansated system responds with zero steady state

error. But the transient responses for two cases are similar.
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2) Lag Compansation : Ideal integral compansator requires an active integrator. But as 

we will see later, circuit configration for the lag compansator can be obtained with

passive networks and thus do not require the active amplifiers and possible additional

power sources. Hovewer, lag compansators can not drive the steady-state error to zero. 

But very small steady state error can be obtained. The configration and transfer function

of lag compansators shown in following figure. 

Example : Compansate the system of previous example to improve the steady –state

error by a factor of 10 if the system is operating with a damping ratio of 0.174.

Solution : Remember that steady state error of uncompansated system is 0.108 with a 

gain K=8.23. From the problem statement, e(∞)=0.108/10=0.0108. If we want to design

a lag compansator, the following algorithm can be used to select K, zc and pc

conventionally. Using the formulation for steady state error which we have learned in the

lecture “Steady-State Errors”, we can find the value of K as follow:

59.91
0108.0

0108.01

)(

)(1

1

1
)( =

−
=

∞

∞−
=⇒

+

=∞

e

e
K

K
e 13.11

23.8

59.91
===

old

new

c

c

K

K

p

z



9

Arbitrarily select pc=0.01 and zc=11.13pc≈0.111 . Let us compare the compansated

system with uncompansated system as shown in following figure. Steady-state error of 

the uncompansated system is 0.108 while the compansated system has steady state

error of 0.011.
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Improving Transient Response via Cascade Compensation

We will discuss two ways to improve transient response using cascade compensation.

1)Ideal Derivative Compensation (PD) : The transient response of a system can be 

selected by choosing an appropriate closed loop pole location on the s-plane. If this

point is on the root locus, then a simple gain adjustment is all that is required in order to

meet the transient response specification. A compensator whose transfer function

Gc(s) =s + zc, the sum of a differentiator and a pure gain, is called an ideal derivative, or

PD controller.

Example : Given the system of following figure, design an ideal derivative compensator

to yield a 16% overshoot, with a threefold reduction in settling time. 

Solution : Let us first evaluate the performance of uncompansated system with 16% 

overshoot. Since 16% overshoot is eqivalent to ζ=0.504, we search along that damping 

ratio line for an odd multiple of 180° and find that the dominant, second order pair of 

poles is at -1.205±j2.064. Thus the settling time of the uncompansated system is 

Ts=4/(ζωn)=3.320 . The root locus of uncompansated system is shown in following

figure.
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Root locus for 
Uncompensated system

Now we proceed to compansate the system. First we find the location of the

compansated system’s dominant poles. In order to have a threefold reduction in the

settling time, the compansated system’ settling time will be 1.107 .  Therefore, real part

of the compansated system dominant pole is

613.3
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Following figure shows the designed dominant second order pole with a real part equal

to -3.613 . 

Therefore imaginary part of compansated system second order dominant pole is



13

Next we design the location of compansator zero. Using a computer code, such as the

code extended to book’s cd, input the uncompansated system poles and zeros and find

the optimum value for zero. For this example, σ=3. Following figure shows the root locus

of compansated system.
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Following figure shows the step response and comparison result of compansated and

uncompansated system
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Block Diagram and Transfer Function of PD Controller : Once we decide on the

location of the compansating zero, how do we implement the ideal derivative, or PD 

controller? The ideal integral compansatorthat improved steady-state error was

implemented with a proportional-plus-integral (PI) controller. The ideal derivative

compansator used to improve transient response is implemented with a proportional-

plus-derivative (PD) controller. For example, in the following figure the transfer function

of controller is 
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Hence, K1/K2 is chosen to equal the negative of the compansator zero, and K2 is chosen

to contribute to the reqired loop gain value. 

PD Controller
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2) Lead Compensation : If we want to use passive elements instead of active ones, we

must use the lead compansation to improve transient response. If we use the lead

compansation, noise due to differentiation is reduced. Let us look at the concept behind

lead compansation. If we select a desired dominant second order pole, the sum of the

angles from the uncompansated system’s poles and zeros to the design point can be 

found.  The difference between 180°and the sum of angles must be angular contribution

required of the compansator. For example, look at the figure below. We see that

θ2-θ1-θ3-θ4+θ5=(2k+1)180°

where θ2-θ1=θc is the angular contribution of the lead compansator. From the figure, we

see that θc is the angle of a ray extending from the design point and intersectingthe real

axis at the pole value and zero value of the compansator. 

Figure 9.24Figure 9.24Figure 9.24Figure 9.24
Geometry of lead
compensation
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Now visualize this ray rotating about the desired closed-loop pole location and

intersecting the real axis at the compensator pole and zero, as illustrated in figure below. 

We realize that and infinite number of lead compensators could be used to meet the

transient response requirement. For design, we arbitrarily select either a lead

compensator pole or zero and find the angular contribution at the design point of this

pole or zero along with system open loop poles and zeros. The difference between this

angle and 180°is the required contribution of the remaining compensator pole or zero.

Different examples exist in text book.
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Improving Steady-State Error and Transient Response

The design can use either active or passive compensators, as previously described. If

we design an active PD controller followed by an active PI controller, the resulting

compensator is called a proportional-plus-integral-plus-derivative (PID) controller. If we

first design a passive lead compensator and then design a passive lag compensator, the

resulting compensator is called a lag-lead compensator. 

PID Controller Design : A PID controller is shown in figure below. Its transfer function is
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The transfer function has two zeros and a 

pole at the origin. One zero and the pole at 

the origin can be designed as the ideal 

integral compensator; the other zero can be 

designed as the ideal derivative

compensator. 
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Design technique consists of the following steps :

1. Evaluate the performance of the uncompensated system to determine how much

improvements in transient response is required.

2. Design the PD controller to meet the transient response specifications. The design

includes the zero location and the loop gain. 

3. Simulate the system to be sure all reqirements have been met.

4. Redesign if the simulation shows that the requirements have not been met.

5. Design PI controller to yield the required steady-state error.

6. Determine the gain K1, K2, K3, the PID parameters.  

7. Simulate the system to be sure all requirements have been met.

8. Redesign if the simulation shows that the requirements have not been met

Let us look an example.
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Example : Given the system of figure below, design a PID controller so that the system

can operate with a peak time that is two-thirds that of the uncompensated system at 

%20 overshoot and with zero steady-state error for a step input. 

Solution : Step 1 : Let us first evaluate the uncompensated system operating at 20% 

overshoot. Searching along the 20% overshoot line (ζ=0.456) in root-locus, we find the

dominant poles to be -5.415±j10.57 with a gain 121.5. A third pole exists at -8.619. The

complete performance of the uncompensated system is shown in the first column of the

following table. We estimate that the uncompansated system has a peak time 0.297 

second at 20% overshoot(look at the table).
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Table 9.5Table 9.5Table 9.5Table 9.5
Predicted characteristics of uncompensated, PD- , and PID- compensated systems
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Step 2 : To compensate the system reduce the peak time to two-thirds of that of the

uncompansated system, we must first find compansated system’s dominant pole

location. The imaginary part of the compensated dominant pole is

87.15
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Thus the real part of the compansated dominant pole is 13.8
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Next we design the compensator. Using the geometry shown in figure,
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then zc=55.92

Thus, the PD controller is

GPD=(s+55.92)
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Step 3 and 4 : We simulate the compansated system, as shown in figure below. We see

the reduction in peak time and the improvement in steady-state error over the

uncompansated system. 

Figure 9.35Figure 9.35Figure 9.35Figure 9.35
Step responses for
uncompensated,
PD-compensated,  and
PID-compensated
systems 
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Step 5 : Choosing the ideal integral compansator to be                               , we sketch

The root locus for PID-compensated system, as shown in figure. Searching 0.456 

damping ratio line, we find the dominant, second order poles to be -7.516±j14.67, with

an associated gain of 4.6 . 
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Step 6 : Now we determine the gains K1, K2, K3. We have found GPD and GPI. Thus, the

product of the gain and the PID controller is
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Matching this equation and the transfer function of PID controller we have learned

before which is
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We obtain K1=259.5, K2=128.6 and K3=4.6 
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Step 7 and 8 : The following figure summarize our design. 

Figure 9.35Figure 9.35Figure 9.35Figure 9.35
Step responses for
uncompensated,
PD-compensated,  and
PID-compensated
systems 

All requirements have been met



27

Lag-Lead Compensator Design : Another approach to improve steady state error and

transient response is lead-lag compensator design. We first design the lead

compensator to improve the transient response. Finally we design the lag compensator

to meet the steady-state error requirement. The following steps summarize the design

procedure : 

1. Evaluate the performance of the uncompensated system to determine how much

improvements in transient response is required.

2. Design the lead controller to meet the transient response specifications. The design

includes the zero location, pole location and the loop gain. 

3. Simulate the system to be sure all reqirements have been met.

4.Redesign if the simulation shows that the requirements have not been met.

5. Evaluate the steady-state error performance for the lead compensated system to

determine how much more improvement in steady-state error is required. 

6. Design the lag compansator to yield the required steady-state error.   

7.Simulate the system to be sure all requirements have been met.

8.Redesign if the simulation shows that the requirements have not been met
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Example : Design a lag-lead compensator for the system of following figurew. So that

the system will operate with 20%overshoot and a twofold reduction in settling time. 

Further, the compensated system will exhibit a tenfold improvement in steady-state error

for a ramp input. 

Solution : Step 1: First, we evaluate the performance of uncompensated system

Searching along the 20% overshoot line (ζ=0.456) in the root locus of system, we find

the dominant poles at -1.794±j3.501, with a gain of 192.1. the performance

uncompansated system is summarized in following table.
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Table Table Table Table 
Predicted characteristics of uncompensated, lead-compensated, and lag-lead-
compensated systems of Example
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Step2 : Next we design a lead compensator by selecting the location of uncompensated

system’s dominant poles. In order to realize a twofold reduction of in settling time, the

real part of the dominant pole must be increased by a factor of 2, since the settling time 

is inversely proportional to the real part. Thus, -ζωn = -2(1.794) = -3.588. the imaginary

part of the design point is ωd=ζωntan117.13°=7.003. Now we design the lead

compensator. For this example we select the location of the compensator zero

coincident with the the open loop pole at -6. This choice will eliminate a zero and leave

the lead compensated system with three poles, the same number that the

uncompensated system has. We complete the design by by finding the location of the

compensator pole. Using the root locus program, sum the angles to the design point

from the uncompansated system’s poles and zeros and the compensator zero and get

-164.65°. The difference between 180° and this quantity is the angular contribution

required from the compensator pole, or -15.35°. Using the geometry shown in figure,

Evaluating the
compensator pole for
Example

o
35.15tan

588.3

003.7
=

−cp

from which the location of 

compensator pole pc is found

to be -29.1. The complete root

locus forthe lead compensation

system is sketched in the

following figure. The gain

setting at the design point is 

found to be 1977.



32



33

Step3 and 4 : Check the design with a simulation. The result for the lead compensated

system is shown in figure and is satisfactory.
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Step5 : Continue by designing the lag compensator to improve the steady-state error. 

Since the uncompensated system open loop transfer function is 
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The static error constant Kv which is inversely proportional to the steady state error is 

3.201. Since the open loop transfer function of the lead compensated system is
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The static error constant is 6.794. Thus, the addition of lead compensation has 

improved the steady state error by factor of 2.122. since the requirements of the problem 

specified a tenfold improvement, the lag compensator must be designed to improve the

steady-state error by a factor of 4.713 (10/2.122=4.713) over the lead compensated

system . 

Step 6 : We arbitrarily choose the lag compensator pole at 0.01, which then places the

lag compensator zero at 0.04713, yielding
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where the uncompansated system pole at -6 canceled the lead compensator zero at -6.
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By drawing the complete root locus for the lag-lead compensated system and by

searching along the 0.456 damping ratio line, we find the dominant, the closed loop

poles to be at -3.574±j6.976, with a gain of 1971. the lag-lead compansated root locus is 

shown in figure. 
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A summary of our design is shown in following table. Notice that the lag-lead

compensation has indeed increased the speed of the system, as witnessed by the

settling time or the peak time. The steady-state error for a ramp input has also

decreased by about 10 times as ssen from e(∞).
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Step 7 : The final proof of our designs is shown by the simulation of following figures. 
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Following tables show the summary of cascade compensators.
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FEEDBACK COMPENSATION
The design procedures for feedback compensation can be more complicated than for

cascade compensation. On the other hand, feedback compensation can yield faster

response. A configration included feedback compensator is shown in following figure. 

Note that feedback compensator Hc(s) is placed in the minor loop of a feedback control

system.

Other configrations arise if we consider K unity, G2(s) unity, or both unity.
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The equivalent block diagram is shown in figure below.

A popular feedback compensator is tachometer as shown in figure below. A tachometer

is a voltage generator that yields a voltage output proportional to the input rotational

speed. 

Figure Figure Figure Figure 
a.a.a.a. Transfer function of a tachometer;
b.b.b.b. tachometer feedback compensation
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We now discuss the design procedures. The design of feedback compensation consists

of  finding the gains, such as K, K1 and Kf which are seen in the previous block diagram

after establishing a dynamic form for Hc. There are two approaches. 

Approach 1 : The first approach consists of reducing the first figure to the second one

by pushing K to the right past summing junction, pushing G2(s) to the left past the pickoff

point, and then adding the two feedback paths.  
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Following figure shows that the loop gain, G(s)H(s), is

G(s)H(s) = K1G1(s)[KfHc(s)+KG2(s)]

For example, ig G2(s)=1 and minor loop feedback, KfHc(s), is a rate sensor, KfHc(s)=Kfs, 

then using the formulation above the loop gain is
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Thus a zero at –K/Kf is added to the existing open loop poles and zeros. This zero

reshapesthe root locus go through the desired design point. A final adjustment of the

gain, K1, yields the desired response. Again, you should verify that this zero is not a 

closed loop zero. Let us look a numerical example. 
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Example : Given the system of figure(a), design rate feedback compensation as shown

in figure(b) to reduce the settling time by a factor of 4 while continuing to operate the

system with 20% overshoot. 
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Solution : First design a PD compensator. For the uncompensated system search along

20%overshoot line (ζ=0.456) and find the dominant poles are that -1.809±j3.531, (you

can find this values by sketcing the root locus). The settling time is 2.21 second and

must be reduced by a factor of 4 to 0.55 second. Next determine the location of the

dominant poles for the compensated system. To achieve a fourfold decrease in the

settling time, the real part of the pole must be increased by a factor of 4. Thus the

compensated pole has a real part of 4*(-1.809)=-7.236. The imaginary part is then

ωd=-7.236tan117.13°=14.12

where 117.13 is the angle of the 20% overshoot line. Using the compensated position of 

-7.236±j14.12, we sum the angles from the compensated system poles and obtain

-277.33°. This angle requires a compensator zero contribution of +97.33°to yield 180°at 

the design point. The geometry is shown in following figure leads to the calculation of the

compensator zero location. Hence

)33.97180tan(
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from which zc=5.42
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The gain at the design point, which is K1Kf from figure(c), is found to be 256.7 . Since Kf

is the reciprocal of the compensator zero, Kf=0.185. Thus K1=1388 . In order to evaluate

the steady-state eroor characteristic, Kv is found from figure(d) to be 
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The result of simulation is shown in following figure.  Figure shows the design

specifications are met.
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Approach 2 : The second approach allows us to use feedback compensation to design

a minor loo’s transient response seretely from the closed loop system response. We will

see that the minor loop of the figure basically represents a forward path transfer function

whose poles can be adjusted with the minor loop gain. These poles then become the

open loop poles for the entire control system.  In other words, rather than reshaping the

root locus with additional poles or zeros, as in cascade compensation, we can actually

change the plant’s poles through a gain adjustment. Finally, the closed loop poles are

set by the loop gain, as in cascade compensation
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Example : For the system of following figure(a), design a minor loop feedback

compensation, as shown in figure (b), to yield a damping ratio of 0.8 for the minor loop

and a damping ratio of 0.6 for the closed loop system.  
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Solution : The minor loop is defined as the loop containing the plant, 1/[s(s+5)(s+15)], 

and the feedback compensator, Kfs. The value of Kf will be adjusted to set the location of 

the minor loop poles, and then K will be adjusted to yield the desired closed loop

response. The transfer function of the minor loop, GML(s), is
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The poles of GML can be found analytically or via the root locus. If the root locus for the

minor loop, where Kfs/[s(s+5)(s+15)] is the open loop transfer function, is sketched, 

drawing the ζ=0.8 line yields the complex poles at -10±j7.5. The gain Kf, which equals

81.25, places the minor poles in a position to meet the specifications. The poles just

found as well as the pole at the orogon , act as openloop poles that gnerate a root locus

for varaitons of the gain K. Similarly, the closed loop complex poles are found to be        

-4.535±j6.046, with a required gain of 624.3. a third pole is at -10.93. 
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The result of simulation is shown in following figure.  Figure shows the design

specifications are met.
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PHYSICAL REALIZATION OF COMPENSATION

We know the transfer function of an inverting operational amplifier whose configration

shown in figure is
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By judicious choice of Z1(s) and Z2(s), this circuit can be used as a building block to

implement the compensators, such as PID controller. Following table summarizes the

realization of all controllers. 

Other compensators can be realized by cascading compensators shown in table. For

example, a lead-lag compensator can be formed by cascading the lead compensator

with lag compensator.
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Example :Implement the PID controller has the transfer function
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Solution : The transfer function of the controller can be put in the form
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Comparing the PID controller in the table, we obtain following three relationships : 
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Since there are four unknowns and three equations, we arbitrariliy select a practical

value for one of the elements. Selecting C2=0.1 µF, the remaining values are found to be 

R1=357.65 kΩ, R2=178.891 kΩ and C1=5.59 µF. The complete circuit is shown in 

following figure, where the circuit element values have been rounded off. 
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Passive circuit realizition : Lag, lead, and lead lag compensators can also be 

implemented with pssive network. Following table summarizes the networks and their

transfer function.
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Example : Realize the lead compensator has the transfer function
09.20
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Solution : Comparing the transfer function of a lead network shown in previous table

with the compensator transfer function, we obtain the following relationships :
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Hence, R1C=0.25 and R2C=0.0622. Since there are three network elements and two

equations, we may select one of the element values arbitrarily. Letting C=1 µF, then

R1=250 kΩ and R2=62.2 kΩ. 


