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Last time we talked about:

 Transforming the information source to a form 

compatible with a digital system

 Sampling/Reconstruction

 Aliasing

 Quantization

 Uniform and non-uniform

 Baseband modulation

 Binary pulse modulation

 M-ary pulse modulation

 M-PAM (M-ary Pulse amplitude modulation)
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Formatting and transmission of baseband signal

 Information (data) rate:

 Symbol rate :
 For real time transmission: 

Sampling at rate

(sampling time=Ts)

Quantizing each sampled

value to one of the 

L levels in quantizer.

Encoding each q. value to 

bits

(Data bit duration Tb=Ts/l)

Encode

Pulse

modulateSample Quantize

Pulse waveforms

(baseband signals)

Bit stream

(Data bits)
Format

Digital info.

Textual 

info.

Analog 

info.

source

Mapping every                     data bits to a 

symbol out of M symbols and transmitting

a baseband waveform with duration T

ss Tf /1 Ll 2log

Mm 2log

[bits/sec]  /1 bb TR 

ec][symbols/s  /1 TR 
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Quantization example

t

Ts: sampling time

x(nTs): sampled values
xq(nTs): quantized values

boundaries

Quant. levels

111    3.1867

110    2.2762

101    1.3657

100    0.4552

011   -0.4552

010   -1.3657

001   -2.2762

000   -3.1867

PCM

codeword 110   110   111   110   100   010   011   100   100   011 PCM sequence

amplitude

x(t)
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Example of M-ary PAM
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Assuming real time transmission and equal energy per 

transmission data bit for binary-PAM and 4-ary PAM:

• 4-ary: T=2T
b

and Binary: T=T
b

•

4-ary PAM

(rectangular pulse)

Binary PAM

(rectangular pulse)

‘11’

22 10BA 
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Example of M-ary PAM … 
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Today we are going to talk about:

 Receiver structure

 Demodulation (and sampling)

 Detection

 First step for designing the receiver

 Matched filter receiver

 Correlator receiver
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Demodulation and detection

 Major sources of errors:

 Thermal noise (AWGN)
 disturbs the signal in an additive fashion (Additive)

 has flat spectral density for all frequencies of interest (White)

 is modeled by Gaussian random process (Gaussian Noise) 

 Inter-Symbol Interference (ISI)
 Due to the filtering effect of transmitter, channel and receiver, 

symbols are “smeared”. 

Format
Pulse 

modulate

Bandpass

modulate

Format Detect
Demod.

& sample

)(tsi)(tgiim

im̂ )(tr)(Tz

channel
)(thc

)(tn

transmitted symbol

estimated symbol

Mi ,,1

M-ary modulation
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Example: Impact of the channel
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Example: Channel impact …
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Receiver tasks

 Demodulation and sampling: 

 Waveform recovery and preparing the received 

signal for detection:

 Improving the signal power to the noise power (SNR) 

using matched filter

 Reducing ISI using equalizer 

 Sampling the recovered waveform 

 Detection:

 Estimate the transmitted symbol based on the 

received sample



Lecture 3 12

Receiver structure

Frequency

down-conversion

Receiving 

filter

Equalizing

filter

Threshold 

comparison

For bandpass signals Compensation for 

channel induced ISI

Baseband pulse

(possibly distored)
Sample

(test statistic)
Baseband pulse

Received waveform

Step 1 – waveform to sample transformation Step 2 – decision making

)(tr
)(Tz

im̂

Demodulate & Sample Detect
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Baseband and bandpass 

 Bandpass model of detection process is 

equivalent to baseband model because:

 The received bandpass waveform is first 

transformed to a baseband waveform.

 Equivalence theorem:

 Performing bandpass linear signal processing followed by 

heterodyning the signal to the baseband, yields the same 

results as heterodyning the bandpass signal to the 

baseband , followed by a baseband linear signal 

processing.
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Steps in designing the receiver

 Find optimum solution for receiver design with the 
following goals: 

1. Maximize SNR

2. Minimize ISI

 Steps in design:
 Model the received signal

 Find separate solutions for each of the goals.

 First, we focus on designing a receiver which 
maximizes the SNR.
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Design the receiver filter to maximize the SNR

 Model the received signal

 Simplify the model:

 Received signal in AWGN

)(thc
)(tsi

)(tn

)(tr

)(tn

)(tr)(tsi

Ideal channels
)()( tthc 

AWGN

AWGN

)()()()( tnthtstr ci 

)()()( tntstr i 
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Matched filter receiver 

 Problem:

 Design the receiver filter        such that the SNR is 

maximized at the sampling time when        

is transmitted.

 Solution:

 The optimum filter, is the Matched filter, given by

which is the time-reversed and delayed version of the conjugate 

of the transmitted signal

)(th

)()()(
*

tTsthth iopt 

)2exp()()()(
*
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Example of matched filter

T t T t T t0 2T
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Properties of the matched filter

The Fourier transform of a matched filter output with the matched signal as input 
is, except for a time delay factor, proportional to the ESD of the input signal.

The output signal of a matched filter is proportional to a shifted version of the 
autocorrelation function of the input signal to which the filter is matched.

The output SNR of a matched filter depends only on the ratio of the signal energy 
to the PSD of the white noise at the filter input.

Two matching conditions in the matched-filtering operation:

spectral phase matching that gives the desired output peak at time T.

spectral amplitude matching that gives optimum SNR to the peak value.
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Correlator receiver

 The matched filter output at the sampling time, 

can be realized as the correlator output.
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Implementation of matched filter receiver
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Implementation of correlator receiver
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Implementation example of matched filter 

receivers
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