Digital Communications I: Modulation and Coding Course

Spring-2015
Jeffrey N. Denenberg
Lecture 3b: Detection and Signal Spaces

Last time we talked about:

- Receiver structure
- Impact of AWGN and ISI on the transmitted signal
- Optimum filter to maximize SNR
- Matched filter receiver and Correlator receiver

Receiver job

- Demodulation and sampling:
- Waveform recovery and preparing the received signal for detection:
- Improving the signal power to the noise power (SNR) using matched filter
- Reducing ISI using equalizer
- Sampling the recovered waveform
- Detection:
- Estimate the transmitted symbol based on the received sample

Receiver structure

Digital Receiver

Step 1 - waveform to sample transformation

Implementation of matched filter receiver

Bank of M matched filters

Implementation of correlator receiver

Bank of M correlators

Lecture 4

Today, we are going to talk about:

- Detection:
- Estimate the transmitted symbol based on the received sample
- Signal space used for detection
- Orthogonal N-dimensional space
- Signal to waveform transformation and vice versa
- What is a signal space?
- Vector representations of signals in an N-dimensional orthogonal space
- Why do we need a signal space?
- It is a means to convert signals to vectors and vice versa.
- It is a means to calculate signals energy and Euclidean distances between signals.
- Why are we interested in Euclidean distances between signals?
- For detection purposes: The received signal is transformed to a received vector. The signal which has the minimum Euclidean distance to the received signal is estimated as the transmitted signal.

Schematic example of a signal space

$\underset{\text { Transmitted signal }}{\text { alternatives }}\left\{\begin{array}{l}s_{1}(t)=a_{11} \psi_{1}(t)+a_{12} \psi_{2}(t) \Leftrightarrow \mathbf{s}_{1}=\left(a_{11}, a_{12}\right) \\ s_{2}(t)=a_{21} \psi_{1}(t)+a_{22} \psi_{2}(t) \Leftrightarrow \mathbf{s}_{2}=\left(a_{21}, a_{22}\right) \\ s_{3}(t)=a_{31} \psi_{1}(t)+a_{32} \psi_{2}(t) \Leftrightarrow \mathbf{s}_{3}=\left(a_{31}, a_{32}\right)\end{array}\right.$

- To form a signal space, first we need to know the inner product between two signals (functions):
- Inner (scalar) product:

$$
<x(t), y(t)>=\int_{-\infty}^{\infty} x(t) y^{*}(t) d t
$$

Analogous to the "dot" product of discrete n-space vectors $=$ cross-correlation between $\mathrm{x}(\mathrm{t})$ and $\mathrm{y}(\mathrm{t})$

- Properties of inner product:

$$
\begin{gathered}
<a x(t), y(t)>=a<x(t), y(t)> \\
<x(t), a y(t)>=a^{*}<x(t), y(t)> \\
<x(t)+y(t), z(t)>=<x(t), z(t)>+<y(t), z(t)>
\end{gathered}
$$

- The distance in signal space is measure by calculating the norm.
- What is norm?
- Norm of a signal:

$$
\begin{aligned}
& \begin{aligned}
\|x(t)\|= & \sqrt{<x(t), x(t)>}=\sqrt{\int_{-\infty}^{\infty}|x(t)|^{2} d t}=\sqrt{E_{x}} \\
= & \text { "length" or amplitude of } \mathrm{x}(\mathrm{t})
\end{aligned} \\
& \|a x(t)\|=|a|\|x(t)\|
\end{aligned}
$$

- Norm between two signals:

$$
d_{x, y}=\|x(t)-y(t)\|
$$

- We refer to the norm between two signals as the Euclidean distance between two signals.

Example of distances in signal space

The Euclidean distance between signals $z(t)$ and $s(t)$:

$$
\begin{aligned}
d_{s_{i}, z} & =\left\|s_{i}(t)-z(t)\right\|=\sqrt{\left(a_{i 1}-z_{1}\right)^{2}+\left(a_{i 2}-z_{2}\right)^{2}} \\
i & =1,2,3
\end{aligned}
$$

Lecture 4
12

Orthogonal signal space

- N-dimensional orthogonal signal space is characterized by N linearly independent functions $\left\{\psi_{j}(t)\right\}_{j=1}^{N}$ called basis functions. The basis functions must satisfy the orthogonality condition

$$
<\psi_{i}(t), \psi_{j}(t)>=\int_{0}^{T} \psi_{i}(t) \psi_{j}^{*}(t) d t=K_{i} \delta_{j i} \quad 0 \leq t \leq T, ~ j, i=1, \ldots, N
$$

where

$$
\delta_{i j}=\left\{\begin{array}{l}
1 \rightarrow i=j \\
0 \rightarrow i \neq j
\end{array}\right.
$$

- If all $K_{i}=1$, the signal space is orthonormal.
- See my notes on Fourier Series

Example of an orthonormal basis

- Example: 2-dimensional orthonormal signal space

$$
\begin{aligned}
& \begin{cases}\psi_{1}(t)=\sqrt{\frac{2}{T}} \cos (2 \pi t / T) & 0 \leq t<T \\
\psi_{2}(t)=\sqrt{\frac{2}{T}} \sin (2 \pi t / T) & 0 \leq t<T\end{cases} \\
& <\psi_{1}(t), \psi_{2}(t)>=\int_{0}^{T} \psi_{1}(t) \psi_{2}(t) d t=0 \\
& \left\|\psi_{1}(t)\right\|=\left\|\psi_{2}(t)\right\|=1
\end{aligned}
$$

- Example: 1-dimensional orthonormal signal space

Lecture 4
14

Signal space

- Any arbitrary finite set of waveforms $\left\{s_{i}(t)\right\}_{i=1}^{M}$ where each member of the set is of duration T, can be expressed as a linear combination of N orthonogal waveforms $\left\{\psi_{j}(t)\right\}_{j=1}^{N}$ where $N \leq M$.

$$
s_{i}(t)=\sum_{j=1}^{N} a_{i j} \psi_{j}(t) \quad \begin{aligned}
& i=1, \ldots, M \\
& N \leq M
\end{aligned}
$$

where

$$
\begin{gathered}
\begin{array}{c}
\text { I- } \\
a_{i j}=\frac{1}{K_{j}}<s_{i}(t), \psi_{j}(t)>=\frac{1}{K_{j}} \int_{0}^{T} s_{i}(t) \psi_{j}^{*}(t) d t \quad \begin{array}{c}
j=1, \ldots, N \\
i=1, \ldots, M
\end{array} 0 \leq t \leq T \\
\mathbf{s}_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i N}\right) \\
\text { Vector representation of waveform } \\
\text { Lecture } 4
\end{array} \begin{array}{c}
E_{i}=\sum_{j=1}^{N} K_{j}\left|a_{i j}\right|^{2} \\
\text { Waveform energy } \\
15
\end{array}
\end{gathered}
$$

Signal space

$$
s_{i}(t)=\sum_{j=1}^{N} a_{i j} \psi_{j}(t) \quad \mathbf{s}_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i N}\right)
$$

Waveform to vector conversion

Vector to waveform conversion

Example of projecting signals to an

 orthonormal signal space

Transmitted signal $\quad s_{1}(t)=a_{11} \psi_{1}(t)+a_{12} \psi_{2}(t) \Leftrightarrow \mathbf{s}_{1}=\left(a_{11}, a_{12}\right)$ alternatives

$$
\begin{gathered}
s_{2}(t)=a_{21} \psi_{1}(t)+a_{22} \psi_{2}(t) \Leftrightarrow \mathbf{s}_{2}=\left(a_{21}, a_{22}\right) \\
s_{3}(t)=a_{31} \psi_{1}(t)+a_{32} \psi_{2}(t) \Leftrightarrow \mathbf{s}_{3}=\left(a_{31}, a_{32}\right) \\
a_{i j}=\int_{0}^{T} s_{i}(t) \psi_{j}(t) d t \quad j=1, \ldots, N \\
\text { Lecture } 4
\end{gathered}
$$

Signal space - cont'd

To find an orthonormal basis functions for a given set of signals, the Gram-Schmidt procedure can be used.

Gram-Schmidt procedure:

Given a signal set $\left\{s_{i}(t)\right\}_{i=1}^{M}$, compute an orthonormal basis $\left\{\psi_{j}(t)\right\}_{j=1}^{M}$

1. Define $\psi_{1}(t)=s_{1}(t) / \sqrt{E_{1}}=s_{1}(t) /\left\|s_{1}(t)\right\|$
2. For $i=2, \ldots, M$ compute $d_{i}(t)=s_{i}(t)-\sum_{j=1}^{i-1}<s_{i}(t), \psi_{j}(t)>\psi_{j}(t)$
If $d_{i}(t) \neq 0$ let $\psi_{i}(t)=d_{i}(t) /\left\|d_{i}(t)\right\|$

If $d_{i}(t)=0$, do not assign any basis function.
3. Renumber the basis functions such that basis is

$$
\left\{\psi_{1}(t), \psi_{2}(t), \ldots, \psi_{N}(t)\right\}
$$

- This is only necessary if $d_{i}(t)=0$ for any i in step 2.

Note that $\quad N \leq M$

Example of Gram-Schmidt procedure

- Find the basis functions and plot the signal space for the following transmitted signals:

- Using Gram-Schmidt procedure:
(1) $E_{1}=\int_{0}^{T}\left|s_{1}(t)\right|^{2} d t=A^{2}$
$\psi_{1}(t)=s_{1}(t) / \sqrt{E_{1}}=s_{1}(t) / A$
(2) $\left\langle s_{2}(t), \psi_{1}(t)\right\rangle=\int_{0}^{T} s_{2}(t) \psi_{1}(t) d t=-A$

Lecture 4

Implementation of the matched filter receiver

Bank of N matched filters

$$
\begin{aligned}
& s_{i}(t)=\sum_{j=1}^{N} a_{i j} \psi_{j}(t) \quad i=1, \ldots, M \\
& \mathbf{z}=\left(z_{1}, z_{2}, \ldots, z_{N}\right) \\
& z_{j}=r(t) * \psi_{j}(T-t) \quad j=1, \ldots, N
\end{aligned}
$$

Lecture 4

Implementation of the correlator receiver

Bank of N correlators

Example of matched filter receivers using hasic functions

1 matched filter

- Number of matched filters (or correlators) is reduced by 1 compared to using matched filters (correlators) to the transmitted signal.
- Reduced number of filters (or correlators)

White noise in the orthonormal signal space

- AWGN, $n(t)$, can be expressed as

$$
n(t)=\hat{n}(t)+\tilde{n}(t)
$$

Noise projected on the signal space which impacts the detection process.

Noise outside of the signal space

Vector representation of $\hat{n}(t)$
$\mathbf{n}=\left(n_{1}, n_{2}, \ldots, n_{N}\right)$
$\left\{n_{j}\right\}_{j=1}^{N}$ independent zero-mean Gaussain random variables with variance $\operatorname{var}\left(n_{j}\right)=N_{0} / 2$

Lecture 4

