Digital Communications I: Modulation and Coding Course

Spring - 2015 Jeffrey N. Denenberg Lecture 3c: Signal Detection in AWGN

- Receiver structure
- Impact of AWGN and ISI on the transmitted signal
- Optimum filter to maximize SNR
 - Matched filter and correlator receiver
- Signal space used for detection
 - Orthogonal N-dimensional space
 - Signal to waveform transformation and vice versa

Today we are going to talk about:

Signal detection in AWGN channels

- Minimum distance detector
- Maximum likelihood
- Average probability of symbol error
 - Union bound on error probability
 - Upper bound on error probability based on the minimum distance

Detection problem:

Given the observation vector z, perform a mapping from z to an estimate m̂ of the transmitted symbol, m_i, such that the average probability of error in the decision is minimized.

Lecture 5 4

Statistics of the observation Vector

- AWGN channel model: $\mathbf{z} = \mathbf{s}_i + \mathbf{n}$
 - Signal vector $\mathbf{s}_i = (a_{i1}, a_{i2}, \dots, a_{iN})$ is deterministic.
 - Elements of noise vector $\mathbf{n} = (n_1, n_2, ..., n_N)$ are i.i.d Gaussian random variables with zero-mean and variance $N_0/2$. The noise vector pdf is

$$p_{\mathbf{n}}(\mathbf{n}) = \frac{1}{\left(\pi N_0\right)^{N/2}} \exp\left(-\frac{\|\mathbf{n}\|^2}{N_0}\right)$$

• The elements of observed vector $\mathbf{z} = (z_1, z_2, ..., z_N)$ are independent Gaussian random variables. Its pdf is

$$p_{\mathbf{z}}(\mathbf{z} | \mathbf{s}_i) = \frac{1}{(\pi N_0)^{N/2}} \exp\left(-\frac{\|\mathbf{z} - \mathbf{s}_i\|^2}{N_0}\right)$$

Detection

Optimum decision rule (maximum a posteriori probability):

Set $\hat{m} = m_i$ if $Pr(m_i \text{ sent } | \mathbf{z}) \ge Pr(m_k \text{ sent } | \mathbf{z})$, for all $k \neq i$ where k = 1, ..., M.

Applying Bayes' rule gives:

Set
$$\hat{m} = m_i$$
 if
 $p_k \frac{p_z(\mathbf{z} \mid m_k)}{p_z(\mathbf{z})}$, is maximum for all $k = i$

Detection ...

Partition the signal space into M decision regions, Z₁,...,Z_M such that

Vector **z** lies inside region
$$Z_i$$
 if
 $\ln[p_k \frac{p_z(\mathbf{z} \mid m_k)}{p_z(\mathbf{z})}]$, is maximum for all $k = i$.
That means
 $\hat{m} = m_i$

Lecture 5

Detection (ML rule)

 For equal probable symbols, the optimum decision rule (maximum posteriori probability) is simplified to:

Set $\hat{m} = m_i$ if $p_z(\mathbf{z} \mid m_k)$, is maximum for all k = i

or equivalently:

Set $\hat{m} = m_i$ if ln[$p_z(\mathbf{z} | m_k)$], is maximum for all k = i

which is known as *maximum likelihood*.

Detection (ML)...

Partition the signal space into M decision regions, $Z_1,...,Z_M$.

Restate the maximum likelihood decision rule as follows:

```
Vector z lies inside region Z_i if

\ln[p_z(\mathbf{z} | m_k)], is maximum for all k = i

That means

\hat{m} = m_i
```

9

Detection rule (ML)...

It can be simplified to:

Vector **z** lies inside region Z_i if

 $\|\mathbf{z} - \mathbf{s}_k\|$, is minimum for all k = i

or equivalently:

Vector **r** lies inside region Z_i if $\sum_{j=1}^{N} z_j a_{kj} - \frac{1}{2} E_k$, is maximum for all k = iwhere E_k is the energy of $s_k(t)$.

Maximum likelihood detector block diagram

Lecture 5

11

Schematic example of the ML decision regions

Average probability of symbol error

• Erroneous decision: For the transmitted symbol m_i or equivalently signal vector \mathbf{s}_i , an error in decision occurs if the observation vector \mathbf{z} does not fall inside region Z_i .

Probability of erroneous decision for a transmitted symbol

$$P_e(m_i) = \Pr(\hat{m} \neq m_i \text{ and } m_i \text{ sent})$$

or equivalently

 $Pr(\hat{m} \neq m_i) = Pr(m_i \text{ sent})Pr(\mathbf{z} \text{ does not lie inside } Z_i | m_i \text{ sent})$

Probability of correct decision for a transmitted symbol

 $Pr(\hat{m} = m_i) = Pr(m_i \text{ sent})Pr(\mathbf{z} \text{ lies inside } Z_i | m_i \text{ sent})$

 $P_{c}(m_{i}) = \Pr(\mathbf{z} \text{ lies inside } Z_{i} | m_{i} \text{ sent}) = \int_{Z_{i}} p_{\mathbf{z}}(\mathbf{z} | m_{i}) d\mathbf{z}$ $P_{e}(m_{i}) = 1 - P_{c}(m_{i})$ Lecture 5 13

Av. prob. of symbol error ...

Average probability of symbol error :

$$P_E(M) = \sum_{i=1}^{M} \Pr(\hat{m} \neq m_i)$$

For equally probable symbols:

$$P_{E}(M) = \frac{1}{M} \sum_{i=1}^{M} P_{e}(m_{i}) = 1 - \frac{1}{M} \sum_{i=1}^{M} P_{c}(m_{i})$$
$$= 1 - \frac{1}{M} \sum_{i=1Z_{i}}^{M} \int p_{\mathbf{z}}(\mathbf{z} \mid m_{i}) d\mathbf{z}$$

Lecture 5

14

Example for binary PAM

Erfc / Q(x) Table

TABLE B.1 Complementary Error Function $Q(x) = \int_{x}^{\infty} (1/\sqrt{2\pi}) \exp(-u^{2}/2) du$

Q(x)										
x	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641
0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2168	0.2148
0.8	0.2169	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	* 0.0021	0.0021	0.0020	0.0019
2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0094	0.0003
3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002

$$\operatorname{erfc}(x) = 2Q(x\sqrt{2}) \tag{B.20}$$

$$Q(x) = \frac{1}{2} \operatorname{erfc}\left(\frac{x}{\sqrt{2}}\right) \tag{B.21}$$

- This table gives your erfc(x) and is normalized for $\sigma = 1$ and mean = 0
- Note that it calculates the area under the Gaussian function from x to ∞ (the tail) where x is a positive number.
- Draw a picture to see which portion of the area under the curve is your interest (eg. The area from 1 to x) and use the table to give you the required area (eg. 0.5 Q(x)).
- The table can give you 5 digits (the 5th digit is obtained by linear interpolation) to the right of the decimal point. It is a twodimensional lookup.

B.3 Signal Detection Example

Union bound

Union bound

The probability of a finite union of events is upper bounded by the sum of the probabilities of the individual events.

- Let A_{ki} denote that the observation vector \mathbf{Z} is closer to the symbol vector \mathbf{S}_k than \mathbf{S}_i , when \mathbf{S}_i is transmitted.
- Pr $(A_{ki}) = P_2(\mathbf{s}_k, \mathbf{s}_i)$ depends only on \mathbf{S}_i and \mathbf{S}_k .

Applying Union bounds yields

Example of union bound

Upper bound based on minimum distance

Lecture 5

Example of upper bound on av. Symbol error prob. based on union bound

Eb/No figure of merit in digital communications

- SNR or S/N is the average signal power to the average noise power. SNR should be modified in terms of bit-energy in DCS, because:
 - Signals are transmitted within a symbol duration and hence, are energy signal (zero power).
 - A merit at bit-level facilitates comparison of different DCSs transmitting different number of bits per symbol.

$$\frac{E_b}{N_0} = \frac{ST_b}{N/W} = \frac{S}{N}\frac{W}{R_b}$$

$$egin{array}{ll} R_b &: ext{Bit rate} \ W &: ext{Bandwidth} \end{array}$$

Example of Symbol error prob. For PAM signals

