Digital communications I: Modulation and Coding Course

Spring - 2015 Jeffrey N. Denenberg Lecture 3d: ISI and Equalization

Last time we talked about:

- Signal detection in AWGN channels
 - Minimum distance detector
 - Maximum likelihood
- Average probability of symbol error
 - Union bound on error probability
 - Upper bound on error probability based on the minimum distance

Today we are going to talk about:

- Another source of error:
 - Inter-symbol interference (ISI)
- Nyquist theorem
- The techniques to reduce ISI
 - Pulse shaping
 - Equalization

Inter-Symbol Interference (ISI)

- ISI in the detection process due to the filtering effects of the system
- Overall equivalent system transfer function

$$H(f) = H_t(f)H_c(f)H_r(f)$$

creates echoes and hence time dispersion
causes ISI at <u>sampling time</u>

$$z_k = s_k + n_k + \sum_{i \neq k} \alpha_i s_i$$

Lecture 6 4

Inter-symbol interference

Baseband system model

Equivalent model

Nyquist bandwidth constraint

Nyquist bandwidth constraint:

- The theoretical minimum required system bandwidth to detect Rs [symbols/s] without ISI is Rs/2 [Hz].
- Equivalently, a system with bandwidth W=1/2T=Rs/2 [Hz] can support a maximum transmission rate of 2W=1/T=Rs [symbols/s] without ISI.

$$\frac{1}{2T} = \frac{R_s}{2} \le W \Longrightarrow \frac{R_s}{W} \ge 2 \quad \text{[symbol/s/Hz]}$$

- Bandwidth efficiency, *R*/*W* [bits/s/Hz] :
 - An important measure in DCs representing data throughput per hertz of bandwidth.
 - Showing how efficiently the bandwidth resources are used by signaling techniques. Lecture 6

Ideal Nyquist pulse (filter)

Nyquist pulses (filters)

- Nyquist pulses (filters):
 - Pulses (filters) which results in no ISI at the sampling time.
- Nyquist filter:
 - Its transfer function in frequency domain is obtained by convolving a rectangular function with any real even-symmetric frequency function
- Nyquist pulse:
 - Its shape can be represented by a sinc(t/T) function multiply by another time function.
- Example of Nyquist filters: Raised-Cosine filter

8

Pulse shaping to reduce ISI

- Goals and trade-off in pulse-shaping
 - Reduce ISI
 - Efficient bandwidth utilization
 - Robustness to timing error (small side lobes)

The raised cosine filter

Raised-Cosine Filter

• A Nyquist pulse (No ISI at the sampling time)

The Raised cosine filter – cont'd

11

Pulse shaping and equalization to remove ISI

No ISI at the sampling time

$$H_{\rm RC}(f) = H_t(f)H_c(f)H_r(f)H_e(f)$$

Square-Root Raised Cosine (SRRC) filter and Equalizer

 $H_{\rm RC}(f) = H_t(f)H_r(f)$ $H_r(f) = H_t(f) = \sqrt{H_{\text{RC}}(f)} = H_{\text{SRRC}}(f)$ caused by tr. filter

Taking care of ISI

$$H_e(f) = \frac{1}{H_c(f)}$$
 Taking care of ISI caused by channel

Example of pulse shaping

Example of pulse shaping ...

Raised Cosine pulse at the output of matched filter *Amp*. [V Baseband received waveform at the matched filter output (zero ISI) 0.5 t/T-0.5 -1 -1.5, 2 3 5 6 4 Lecture 6 14

Eye pattern

Eye pattern: Display on an oscilloscope which sweeps the system response to a baseband signal at the rate 1/T (T symbol duration)

Example of eye pattern: Binary-PAM, SRRQ pulse

Perfect channel (no noise and no ISI)

Lecture 6 16

Example of eye pattern: Binary-PAM, SRRQ pulse ...

AWGN (*Eb/N0=20* dB) and no ISI

Example of eye pattern: Binary-PAM, SRRQ pulse ...

• AWGN (*Eb/N0=10* dB) and no ISI

Equalization – cont'd

Lecture 6

19

Equalization

- ISI due to filtering effect of the communications channel (e.g. wireless channels)
 - Channels behave like band-limited filters

20

Equalization: Channel examples

Example of a frequency selective, slowly changing (slow fading) channel for a user at 35 km/h 5 0 channel amp. [dB] -5 -10 -15 -20 20 15 150 100 10 5 50 0 Π frequency index time index

Equalization: Channel examples ...

Example of a frequency selective, fast changing (fast fading)

Example of eye pattern with ISI: Binary-PAM, SRRQ pulse

Non-ideal channel and no noise

 $h_c(t) = \delta(t) + 0.7\delta(t - T)$

Example of eye pattern with ISI: Binary-PAM, SRRQ pulse ...

• AWGN (*Eb/N0=20* dB) and ISI $h_c(t) = \delta(t) + 0.7\delta(t - T)$

Example of eye pattern with ISI: Binary-PAM, SRRQ pulse ...

AWGN (Eb/N0=10 dB) and ISI

$$h_c(t) = \delta(t) + 0.7\delta(t - T)$$

Lecture 6

25

Equalizing filters ...

Baseband system model

Equalization – cont'd

Equalization using

- MLSE (Maximum likelihood sequence estimation)
- Filtering See notes on <u>z-Transform</u> and <u>Digital Filters</u>
 - Transversal filtering
 - Zero-forcing equalizer
 - Minimum mean square error (MSE) equalizer
 - Decision feedback
 - Using the past decisions to remove the ISI contributed by them
 - Adaptive equalizer

Equalization by transversal filtering

Transversal filter:

A weighted tap delayed line that reduces the effect of ISI by proper adjustment of the filter taps.

$$z(t) = \sum_{n=-N}^{N} c_n x(t - n\tau) \qquad n = -N, ..., N \quad k = -2N, ..., 2N$$

Transversal equalizing filter ...

Zero-forcing equalizer:

The filter taps are adjusted such that the equalizer output is forced to be zero at N sample points on each side:

- Mean Square Error (MSE) equalizer:
 - The filter taps are adjusted such that the MSE of ISI and noise power at the equalizer output is minimized.

Example of equalizer

