Digital Communications I: Modulation and Coding Course

Spring - 2015 Jeffrey N. Denenberg Lecture 4b: Detection of M-ary Bandpass Signals

Last time we talked about:

Some bandpass modulation schemes M-PAM, M-PSK, M-FSK, M-QAM

How to perform coherent and noncoherent detection

Example of two dim. modulation

Today, we are going to talk about:

How to calculate the average probability of symbol error for different modulation schemes that we studied?

How to compare different modulation schemes based on their error performances?

Error probability of bandpass modulation

- Before evaluating the error probability, it is important to remember that:
 - The type of modulation and detection (coherent or noncoherent) determines the structure of the decision circuits and hence the decision variable, denoted by z.
 - The decision variable, z, is compared with M-1 thresholds, corresponding to M decision regions for detection purposes.

- The matched filters output (observation vector = r) is the detector input and the decision variable is a z = f(r) function of r, i.e.
 - For MPAM, MQAM and MFSK with coherent detection $z = \mathbf{r}$
 - For MPSK with coherent detection $z = \angle \mathbf{r}$
 - For non-coherent detection (M-FSK and DPSK), $z = |\mathbf{r}|$
- We know that for calculating the average probability of symbol error, we need to determine

 $Pr(\mathbf{r} \text{ lies inside } Z_i | \mathbf{s}_i \text{ sent}) \equiv Pr(z \text{ satisfies condition } C_i | \mathbf{s}_i \text{ sent})$

Hence, we need to know the statistics of z, which depends on the modulation scheme and the detection type.

6

• AWGN channel model: $\mathbf{r} = \mathbf{s}_i + \mathbf{n}$

- The signal vector $\mathbf{s}_i = (a_{i1}, a_{i2}, ..., a_{iN})$ is deterministic.
- The elements of the noise vector $\mathbf{n} = (n_1, n_2, ..., n_N)$ are i.i.d Gaussian random variables with zero-mean and variance $N_0/2$. The noise vector's pdf is

$$p_{\mathbf{n}}(\mathbf{n}) = \frac{1}{\left(\pi N_0\right)^{N/2}} \exp\left(-\frac{\left\|\mathbf{n}\right\|^2}{N_0}\right)$$

• The elements of the observed vector $\mathbf{r} = (r_1, r_2, ..., r_N)$ are independent Gaussian random variables. Its pdf is

$$p_{\mathbf{r}}(\mathbf{r} | \mathbf{s}_i) = \frac{1}{\left(\pi N_0\right)^{N/2}} \exp\left(-\frac{\left\|\mathbf{r} - \mathbf{s}_i\right\|^2}{N_0}\right)$$

Lecture 8

7

BPSK and BFSK with *coherent* detection:

Lecture 8

Lecture 8

9

Error probability – cont'd

• Non-coherent detection of BFSK ...

$$P_{B} = \frac{1}{2} \operatorname{Pr}(z_{1} > z_{2} | \mathbf{s}_{2}) + \frac{1}{2} \operatorname{Pr}(z_{2} > z_{1} | \mathbf{s}_{1})$$

$$= \operatorname{Pr}(z_{1} > z_{2} | \mathbf{s}_{2}) = E[\operatorname{Pr}(z_{1} > z_{2} | \mathbf{s}_{2}, z_{2})]$$

$$= \int_{0}^{\infty} \operatorname{Pr}(z_{1} > z_{2} | \mathbf{s}_{2}, z_{2}) p(z_{2} | \mathbf{s}_{2}) dz_{2} = \int_{0}^{\infty} \left[\int_{z_{2}}^{\infty} p(z_{1} | \mathbf{s}_{2}) dz_{1} \right] p(z_{2} | \mathbf{s}_{2}) dz_{2}$$

$$P_{B} = \frac{1}{2} \exp\left(-\frac{E_{b}}{2N_{0}}\right)$$
Rayleigh pdf Rician pdf

Similarly, non-coherent detection of DBPSK

$$P_B = \frac{1}{2} \exp\left(-\frac{E_b}{N_0}\right)$$

Coherent detection of M-PAM Decision variable:

Lecture 8 11

Coherent detection of M-PAM

• Error happens if the noise, $n_1 = r_1 - s_m$, exceeds in amplitude one-half of the distance between adjacent symbols. For symbols on the border, error can happen only in one direction. Hence:

$$P_{e}(\mathbf{s}_{m}) = \Pr\left(n_{1} \mid = \mid r_{1} - \mathbf{s}_{m} \mid > \sqrt{E_{g}}\right) \text{ for } 2 < m < M - 1;$$

$$P_{e}(\mathbf{s}_{1}) = \Pr\left(n_{1} = r_{1} - \mathbf{s}_{1} > \sqrt{E_{g}}\right) \text{ and } P_{e}(\mathbf{s}_{M}) = \Pr\left(n_{1} = r_{1} - \mathbf{s}_{M} < -\sqrt{E_{g}}\right)$$

$$P_{E}(M) = \frac{1}{M} \sum_{m=1}^{M} P_{e}(\mathbf{s}_{m}) = \frac{M - 2}{M} \Pr\left(n_{1} \mid > \sqrt{E_{g}}\right) + \frac{1}{M} \Pr\left(n_{1} > \sqrt{E_{g}}\right) + \frac{1}{M} \Pr\left(n_{1} < \sqrt{E_{g}}\right)$$

$$= \frac{2(M - 1)}{M} \Pr\left(n_{1} > \sqrt{E_{g}}\right) = \frac{2(M - 1)}{M} \int_{\sqrt{E_{g}}}^{\infty} p_{n_{1}}(n) dn = \frac{2(M - 1)}{M} Q\left(\sqrt{\frac{2E_{g}}{N_{0}}}\right)$$

$$E_{s} = (\log_{2} M) E_{b} = \frac{(M^{2} - 1)}{3} E_{g}$$

$$P_{E}(M) = \frac{2(M - 1)}{M} Q\left(\sqrt{\frac{6\log_{2} M}{M^{2} - 1}} \frac{E_{b}}{N_{0}}\right)$$

$$\text{Lecture 8}$$

$$12$$

Coherent detection of M-QAM ...

- M-QAM can be viewed as the combination of two \sqrt{M} PAM modulations on I and Q branches, respectively.
- No error occurs if no error is detected on either the I or the Q branch.
- Considering the symmetry of the signal space and the orthogonality of the I and Q branches:

 $P_E(M) = 1 - P_C(M) = 1 - Pr(\text{no error detected on I and Q branches})$

Pr(no error detected on I and Q branches) = Pr(no error on I)Pr(no error on Q)

$$P_E(M) = 4 \left(1 - \frac{1}{\sqrt{M}}\right) Q\left(\sqrt{\frac{3\log_2 M}{M - 1}} \frac{E_b}{N_0}\right)$$

Lecture 8

=
$$\Pr(\text{no error on I})^2 = \left(1 - P_E(\sqrt{M})\right)^2$$

Average probability of
symbol error for \sqrt{M} – PAM

- Coherent detection of MPSK ...
- The detector compares the phase of observation vector to M-1 thresholds.
- Due to the circular symmetry of the signal space, we have:

$$P_{E}(M) = 1 - P_{C}(M) = 1 - \frac{1}{M} \sum_{m=1}^{M} P_{c}(\mathbf{s}_{m}) = 1 - P_{c}(\mathbf{s}_{1}) = 1 - \int_{-\pi/M}^{\pi/M} p_{\hat{\phi}}(\phi) d\phi$$

where

$$p_{\hat{\phi}}(\phi) \approx \sqrt{\frac{2}{\pi} \frac{E_s}{N_0}} \cos(\phi) \exp\left(-\frac{E_s}{N_0} \sin^2 \phi\right); \quad |\phi| \le \frac{\pi}{2}$$

It can be shown that

$$P_E(M) \approx 2Q\left(\sqrt{\frac{2E_s}{N_0}}\sin\left(\frac{\pi}{M}\right)\right)$$
 or $P_E(M) \approx 2Q\left(\sqrt{\frac{2(\log_2 M)E_b}{N_0}}\sin\left(\frac{\pi}{M}\right)\right)$

Lecture 8

16

Coherent detection of M-FSK

Lecture 8 17

Coherent detection of M-FSK ...

The dimension of the signal space is *M*. An upper bound for the average symbol error probability can be obtained by using the union bound. Hence:

$$P_E(M) \le \left(M - 1\right) Q\left(\sqrt{\frac{E_s}{N_0}}\right)$$

or, equivalently

$$P_E(M) \le (M-1)Q\left(\sqrt{\frac{(\log_2 M)E_b}{N_0}}\right)$$

Bit error probability versus symbol error probability

Number of bits per symbol k = log₂ M
 For orthogonal M-ary signaling (M-FSK)

$$\frac{P_B}{P_E} = \frac{2^{k-1}}{2^k - 1} = \frac{M/2}{M-1}$$
$$\lim_{k \to \infty} \frac{P_B}{P_E} = \frac{1}{2}$$

For M-PSK, M-PAM and M-QAM

$$P_B \approx \frac{P_E}{k}$$
 for $P_E <<1$

Probability of symbol error for binary modulation

Probability of symbol error for M-PSK

Probability of symbol error for M-FSK

Probability of symbol error for M-PAM

Probability of symbol error for M-QAM

 P_{E}

Example of samples of matched filter output for some bandpass modulation schemes

QPSK - Eb/N0=8 dB

8PSK - Eb/N0=8 dB

