Digital Communications I: Modulation and Coding Course

Spring- 2015

Jeffrey N. Denenberg

Lecture 7: Convolutional codes

Last time, we talked about:

Channel coding

- Linear block codes
 - The error detection and correction capability
 - Encoding and decoding
 - Hamming codes
 - Cyclic codes

Today, we are going to talk about:

 Another class of linear codes, known as Convolutional codes.

We study the structure of the encoder.

We study different ways for representing the encoder.

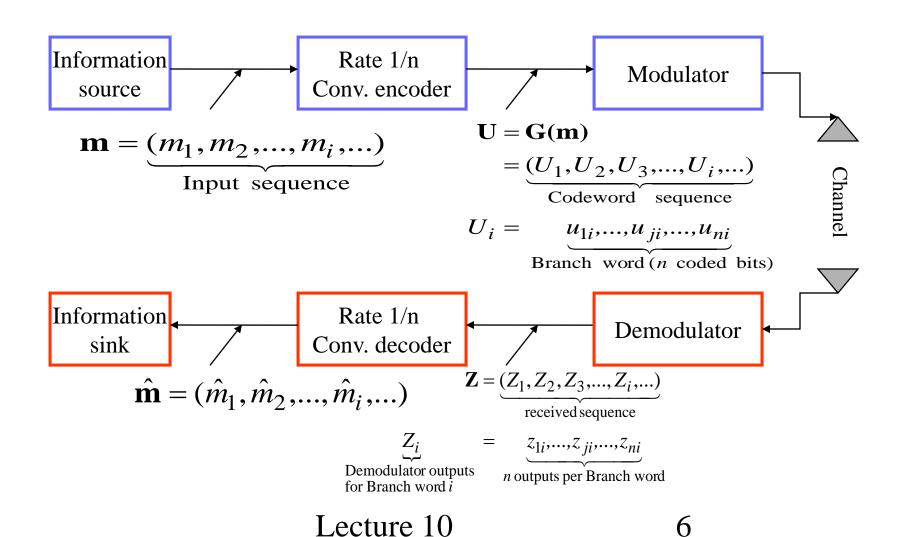
Convolutional codes

- Convolutional codes offer an approach to error control coding substantially different from that of block codes.
 - A convolutional encoder:
 - encodes the entire data stream, into a single codeword.
 - does not need to segment the data stream into blocks of fixed size (Convolutional codes are often forced to block structure by periodic truncation).
 - is a machine with memory.
- This fundamental difference in approach imparts a different nature to the design and evaluation of the code.
 - Block codes are based on algebraic/combinatorial techniques.
 - Convolutional codes are based on construction techniques.

Convolutional codes-cont'd

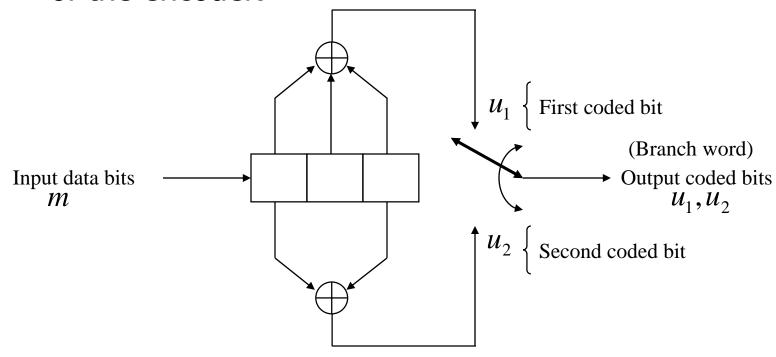
- A Convolutional code is specified by three parameters (n,k,K) or (k/n,K) where
 - $R_c = k/n$ is the coding rate, determining the number of data bits per coded bit.
 - In practice, usually k=1 is chosen and we assume that from now on.
 - K is the constraint length of the encoder a where the encoder has K-1 memory elements.
 - There is different definitions in literatures for constraint length.

Block diagram of the DCS



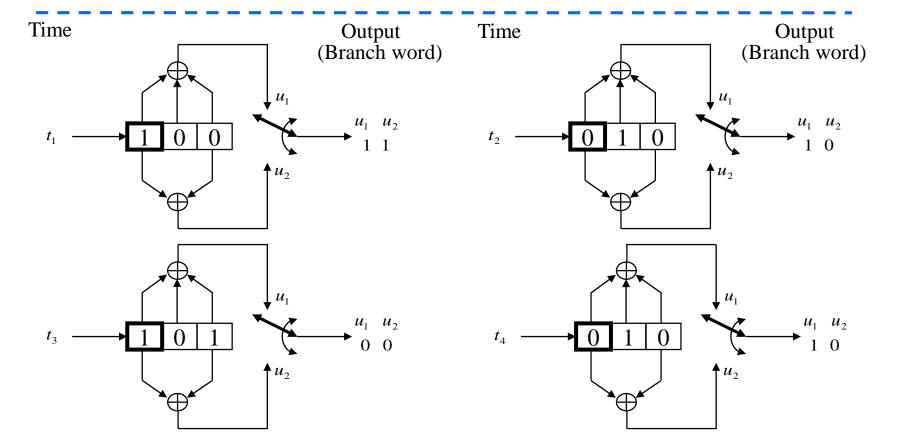
A Rate 1/2 Convolutional encoder

- Convolutional encoder (rate ½, K=3)
 - 3 shift-registers where the first one takes the incoming data bit and the rest, form the memory of the encoder.

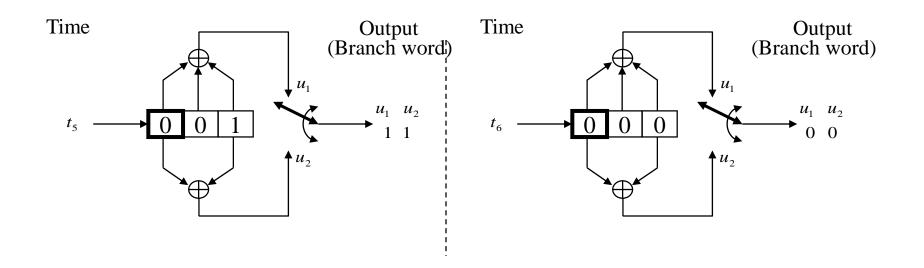


A Rate 1/2 Convolutional encoder

Message sequence: $\mathbf{m} = (101)$



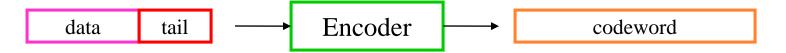
A Rate 1/2 Convolutional encoder



$$\mathbf{m} = (101) \longrightarrow \text{Encoder} \longrightarrow \mathbf{U} = (11 \ 10 \ 00 \ 10 \ 11)$$

Effective code rate

- Initialize the memory before encoding the first bit (all-zero)
- Clear out the memory after encoding the last bit (allzero)
 - Hence, a tail of zero-bits is appended to data bits.



- Effective code rate :
 - L is the number of data bits and k=1 is assumed:

$$R_{eff} = \frac{L}{n(L+K-1)} < R_c$$

Encoder representation

Vector representation:

- We define n binary vector with K elements (one vector for each modulo-2 adder). The i:th element in each vector, is "1" if the i:th stage in the shift register is connected to the corresponding modulo-2 adder, and "0" otherwise.
 - Example:

$$\mathbf{g}_{1} = (111)$$
 $\mathbf{g}_{2} = (101)$
 $m \longrightarrow u_{1} \quad u_{2}$

Encoder representation – cont'd

- Impulse response representaiton:
 - The response of encoder to a single "one" bit that goes through it.

Example:			Dagistan	Branch word	
			Register contents	u_1	u_2
Input sequence: 1	0	0	100	1	1
Output sequence: 11	10	11	010	1	0
-			001	1	1

Input m			Output			
1 1	1	10	11			
0	İ	00	00	00		
1 Modulo-2 sum:	<u>i</u>		11	10	11	
	1	10	00	10	11	

Encoder representation – cont'd

Polynomial representation:

- We define n generator polynomials, one for each modulo-2 adder. Each polynomial is of degree K-1 or less and describes the connection of the shift registers to the corresponding modulo-2 adder.
 - Example:

$$\mathbf{g}_{1}(X) = g_{0}^{(1)} + g_{1}^{(1)}.X + g_{2}^{(1)}.X^{2} = 1 + X + X^{2}$$

$$\mathbf{g}_{2}(X) = g_{0}^{(2)} + g_{1}^{(2)}.X + g_{2}^{(2)}.X^{2} = 1 + X^{2}$$

The output sequence is found as follows:

$$\mathbf{U}(X) = \mathbf{m}(X)\mathbf{g}_1(X)$$
 interlaced with $\mathbf{m}(X)\mathbf{g}_2(X)$

Encoder representation -cont'd

In more details:

$$\mathbf{m}(X)\mathbf{g}_1(X) = (1+X^2)(1+X+X^2) = 1+X+X^3+X^4$$

 $\mathbf{m}(X)\mathbf{g}_2(X) = (1+X^2)(1+X^2) = 1+X^4$
 $\mathbf{m}(X)\mathbf{g}_1(X) = 1+X+0.X^2+X^3+X^4$
 $\mathbf{m}(X)\mathbf{g}_2(X) = 1+0.X+0.X^2+0.X^3+X^4$
 $\mathbf{U}(X) = (1,1)+(1,0)X+(0,0)X^2+(1,0)X^3+(1,1)X^4$
 $\mathbf{U}=11$ 10 00 10

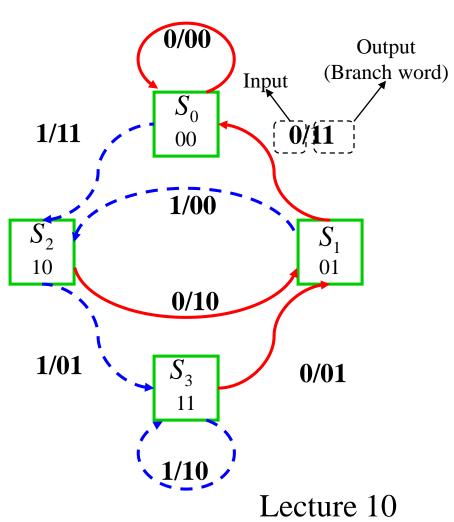
State diagram

- A finite-state machine only encounters a finite number of states.
- State of a machine: the smallest amount of information that, together with a current input to the machine, can predict the output of the machine.
- In a Convolutional encoder, the state is represented by the content of the memory.
- Hence, there are 2^{K-1} states.

State diagram – cont'd

- A state diagram is a way to represent the encoder.
- A state diagram contains all the states and all possible transitions between them.
- Only two transitions initiating from a state
- Only two transitions ending up in a state

State diagram – cont'd

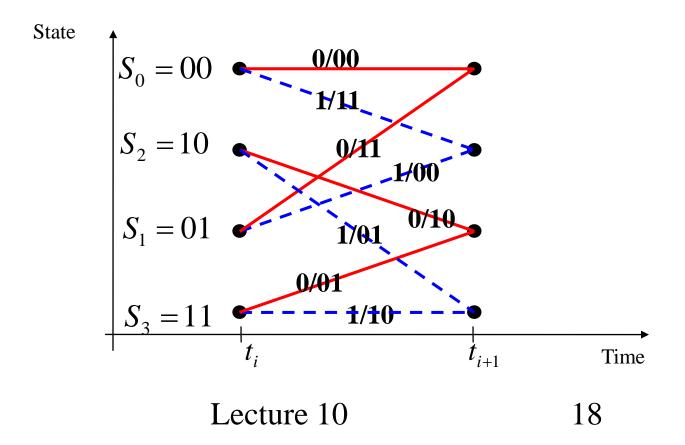


Current state	input	Next state	output
S_0	0	S_0	00
00	1	S_2	11
S_1	0	S_0	11
01	1	S_2	00
S_2	0	S_1	10
10	1	S_3	01
S_3	0	S_1	01
$\begin{bmatrix} \tilde{1} \\ 1 \end{bmatrix}$	1	S_3	10

17

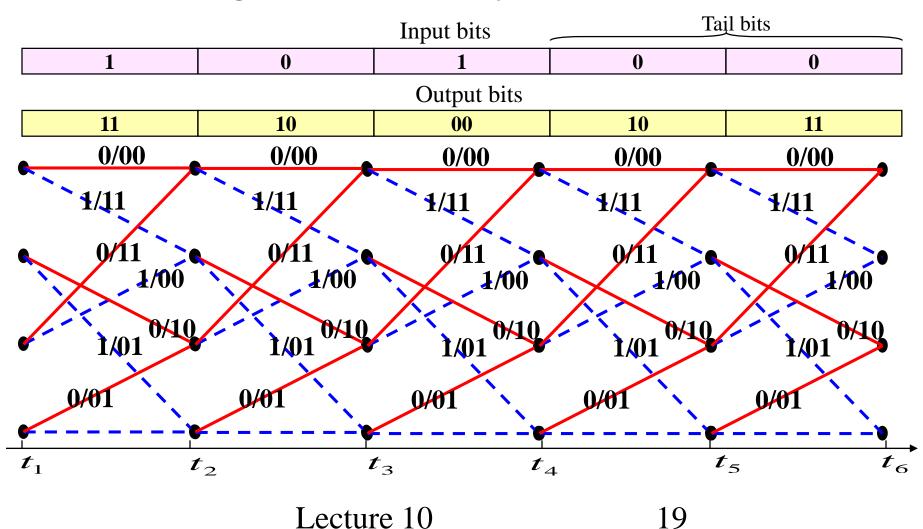
Trellis – cont'd

- Trellis diagram is an extension of the state diagram that shows the passage of time.
 - Example of a section of trellis for the rate ½ code



Trellis -cont'd

A trellis diagram for the example code



Trellis – cont'd

